Cohomología de de Rham en variedades
Loading...
Official URL
Full text at PDC
Publication date
2021
Defense date
2021
Authors
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Citation
Abstract
En este trabajo se estudia la cohomología de de Rham en variedades diferenciables. Se realizará una presentaciión extensa de la misma, con resultados como el teorema de Mayer Vietoris, la invarianza topológica de los grupos de cohomología, la relación entre las cohomologías con y sin soporte compacto mediante la dualidad de Poincaré y el teorema de Künneth que explora la cohomología de variedades producto. No olvidaremos las diversas aplicaciones de la teoría. De forma que calcularemos la cohomología de diferentes variedades, así como el último grupo de cohomología y el de grado 1 de manera general. También, se emplean las diversas herramientas para dar una demostración del teorema de Jordan-Brouwer y estudiar la característica de Euler
In this work we study the de Rham cohomology on smooth manifolds. We will exhibit a wide range of significant results, including the Mayer-Vietoris Theorem, the topological invariance of the de Rham cohomology groups, the close relation between the cohomologies with compact and non-compact support shown in the Poincar´e duality and the K¨unneth Theorem, which explores the cohomology of the product of two manifolds. This theory leads to important applications. We will compute the cohomology groups of different manifolds, as well as the top cohomology group and the degree 1 group in a general case. Besides, the tools that we have developed are used to prove the Jordan-Brouwer Theorem and to study the Euler characteristic.
In this work we study the de Rham cohomology on smooth manifolds. We will exhibit a wide range of significant results, including the Mayer-Vietoris Theorem, the topological invariance of the de Rham cohomology groups, the close relation between the cohomologies with compact and non-compact support shown in the Poincar´e duality and the K¨unneth Theorem, which explores the cohomology of the product of two manifolds. This theory leads to important applications. We will compute the cohomology groups of different manifolds, as well as the top cohomology group and the degree 1 group in a general case. Besides, the tools that we have developed are used to prove the Jordan-Brouwer Theorem and to study the Euler characteristic.