Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Cohomología de de Rham en variedades

Loading...
Thumbnail Image

Official URL

Full text at PDC

Publication date

2021

Defense date

2021

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Citations
Google Scholar

Citation

Abstract

En este trabajo se estudia la cohomología de de Rham en variedades diferenciables. Se realizará una presentaciión extensa de la misma, con resultados como el teorema de Mayer Vietoris, la invarianza topológica de los grupos de cohomología, la relación entre las cohomologías con y sin soporte compacto mediante la dualidad de Poincaré y el teorema de Künneth que explora la cohomología de variedades producto. No olvidaremos las diversas aplicaciones de la teoría. De forma que calcularemos la cohomología de diferentes variedades, así como el último grupo de cohomología y el de grado 1 de manera general. También, se emplean las diversas herramientas para dar una demostración del teorema de Jordan-Brouwer y estudiar la característica de Euler
In this work we study the de Rham cohomology on smooth manifolds. We will exhibit a wide range of significant results, including the Mayer-Vietoris Theorem, the topological invariance of the de Rham cohomology groups, the close relation between the cohomologies with compact and non-compact support shown in the Poincar´e duality and the K¨unneth Theorem, which explores the cohomology of the product of two manifolds. This theory leads to important applications. We will compute the cohomology groups of different manifolds, as well as the top cohomology group and the degree 1 group in a general case. Besides, the tools that we have developed are used to prove the Jordan-Brouwer Theorem and to study the Euler characteristic.

Research Projects

Organizational Units

Journal Issue

Description

Keywords