Comportamiento de los morteros aéreos y de escasa hidraulicidad frente al estrés térmico inducido
Loading...
Official URL
Full text at PDC
Publication date
2025
Defense date
2025
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Citation
Abstract
RESUMEN: La construcción sostenible busca reducir la huella de carbono, lo que ha llevado a revalorizar los morteros de cal, utilizados históricamente por su bajo impacto ambiental, permeabilidad al vapor y capacidad de autoreparación. Sin embargo, su respuesta al estrés térmico inducido por el cambio climático requiere mayor estudio. Este trabajo analiza el comportamiento de morteros de cal aérea (NL) y de baja hidraulicidad (NHL2) frente a la agresión de ciclos térmicos, evaluando su calidad, durabilidad y aplicabilidad como revestimientos en edificaciones.
Se prepararon probetas de ambos morteros, caracterizadas antes y después de 20 ciclos térmicos (75°C) mediante ensayos petrográficos, petrofísicos y mecánicos. Los resultados muestran que ambos morteros responden adecuadamente a la agresión térmica aumentando su resistencia y compacidad, ya que se acelera su proceso de carbonatación (>90%) y se reduce su porosidad. Su porosidad original es muy alta (>20%) y disminuye ligeramente, reorganizándose en poros más pequeños, lo que reduce la permeabilidad, al aire y la entrada de agua capilar, especialmente en el mortero de cal aérea. Del mismo modo, este comportamiento facilita que el agua absorbida sea retenida por más tiempo en su interior, lo que modifica ligeramente su transmisibilidad térmica, tardando algo más de tiempo en ganar y perder calor.
Ambos morteros son viables para revestimientos: NL destaca por su transpirabilidad, mientras que NHL2 es ideal para estructuras expuestas a condiciones adversas por su resistencia. Este trabajo aporta evidencia sobre el potencial de los morteros de cal en la construcción sostenible, especialmente en contextos de estrés térmico, promoviendo su uso frente al cambio climático.
ABSTRACT: Sustainable construction seeks to reduce the carbon footprint, which has led to the revaluation of lime mortars, historically used for their low environmental impact, vapor permeability and self-healing capacity. However, their response to thermal stress induced by climate change requires further study. This work analyzes the behavior of air lime mortars (NL) and low hydraulic mortars (NHL2) against thermal cycling aggression, evaluating their quality, durability and applicability as building coatings. Specimens of both mortars were prepared and characterized before and after 20 thermal cycles (75°C) by means of petrographic, petrophysical and mechanical tests. The results show that both mortars respond adequately to thermal aggression by increasing their strength and compactness, since their carbonation process is accelerated (>90%) and their porosity is reduced. Its original porosity is very high (>20%) and decreases slightly, reorganizing into smaller pores, which reduces permeability to air and the entry of capillary water, especially in the air lime mortar. In the same way, this behavior facilitates that the absorbed water is retained longer in its interior, which slightly modifies its thermal transmissibility, taking slightly more time to gain and lose heat. Both mortars are viable for cladding: NL stands out for its breathability, while NHL2 is ideal for structures exposed to adverse conditions because of its strength. This work provides evidence of the potential of lime mortars in sustainable construction, especially in contexts of thermal stress, promoting their use in the face of climate change.
ABSTRACT: Sustainable construction seeks to reduce the carbon footprint, which has led to the revaluation of lime mortars, historically used for their low environmental impact, vapor permeability and self-healing capacity. However, their response to thermal stress induced by climate change requires further study. This work analyzes the behavior of air lime mortars (NL) and low hydraulic mortars (NHL2) against thermal cycling aggression, evaluating their quality, durability and applicability as building coatings. Specimens of both mortars were prepared and characterized before and after 20 thermal cycles (75°C) by means of petrographic, petrophysical and mechanical tests. The results show that both mortars respond adequately to thermal aggression by increasing their strength and compactness, since their carbonation process is accelerated (>90%) and their porosity is reduced. Its original porosity is very high (>20%) and decreases slightly, reorganizing into smaller pores, which reduces permeability to air and the entry of capillary water, especially in the air lime mortar. In the same way, this behavior facilitates that the absorbed water is retained longer in its interior, which slightly modifies its thermal transmissibility, taking slightly more time to gain and lose heat. Both mortars are viable for cladding: NL stands out for its breathability, while NHL2 is ideal for structures exposed to adverse conditions because of its strength. This work provides evidence of the potential of lime mortars in sustainable construction, especially in contexts of thermal stress, promoting their use in the face of climate change.












