Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Stability analysis of sonic horizons in Bose-Einstein condensates

dc.contributor.authorBarceló, C.
dc.contributor.authorCano, A.
dc.contributor.authorGaray Elizondo, Luis Javier
dc.contributor.authorJannes, G.
dc.date.accessioned2023-06-20T10:51:43Z
dc.date.available2023-06-20T10:51:43Z
dc.date.issued2006-07
dc.description© 2006 The American Physical Society. C. B. has been funded by the Spanish MEC under Project No. FIS2005-05736-C03-01 with a partial FEDER contribution. G. J. was supported by CSIC grants No. I3P-BGP2004 and No. I3P-BPD2005 of the I3P programme, cofinanced by the European Social Fund, and by the Spanish MEC under Project No. FIS2005-05736-C03- 02. L. J. G. was supported by the Spanish MEC under the same project and No. FIS2004-01912.
dc.description.abstractWe examine the linear stability of various configurations in Bose-Einstein condensates with steplike sonic horizons. These configurations are chosen in analogy with gravitational systems with a black hole horizon, a white hole horizon, and a combination of both. We discuss the role of different boundary conditions in this stability analysis, paying special attention to their meaning in gravitational terms. We highlight that the stability of a given configuration, not only depends on its specific geometry, but especially on these boundary conditions. Under boundary conditions directly extrapolated from those in standard general relativity, black hole configurations, white hole configurations, and the combination of both into a black hole-white hole configuration are shown to be stable. However, we show that under other (less stringent) boundary conditions, configurations with a single black hole horizon remain stable, whereas white hole and black hole-white hole configurations develop instabilities associated to the presence of the sonic horizons.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipSpanish MEC
dc.description.sponsorshipCSIC
dc.description.sponsorshipEuropean Social Fund
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/29854
dc.identifier.doi10.1103/PhysRevD.74.024008
dc.identifier.issn1550-7998
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevD.74.024008
dc.identifier.relatedurlhttp://journals.aps.org
dc.identifier.relatedurlhttp://cds.cern.ch/record/936931/files/0603089.pdf?version=1
dc.identifier.urihttps://hdl.handle.net/20.500.14352/51353
dc.issue.number2
dc.journal.titlePhysical review D
dc.language.isoeng
dc.publisherAmer Physical Soc
dc.relation.projectIDFIS2005-05736-C03-01
dc.relation.projectIDI3P-BGP2004
dc.relation.projectIDI3P-BPD2005
dc.relation.projectIDFIS2004-01912.
dc.relation.projectIDFIS2005-05736-C03- 02
dc.rights.accessRightsopen access
dc.subject.cdu51-73
dc.subject.keywordBlack-holes
dc.subject.keywordAnalog
dc.subject.ucmFísica-Modelos matemáticos
dc.subject.ucmFísica matemática
dc.titleStability analysis of sonic horizons in Bose-Einstein condensates
dc.typejournal article
dc.volume.number74
dcterms.references[1] A. Ashtekar and J. Lewandowski, Classical Quantum Gravity 21, R53 (2004). [2] C. Barceló, S. Liberati, and M. Visser, Living Rev. Relativity 8, 12 (2005), http://www.livingreviews.org/ lrr-2005-12. [3] Artificial Black Holes, edited by M. Novello, M. Visser, and G. Volovik (World Scientific, Singapore, 2002). [4] C. Barceló, S. Liberati, and M. Visser, Classical Quantum Gravity 18, 1137 (2001). [5] F. Dalfovo, S. Giorgini, L. Pitaevskii, and S. Stringari, Rev. Mod. Phys. 71, 463 (1999). [6] Y. Castin, in: Coherent Atomic Matter Waves, Lecture Notes of Les Houches Summer School, edited by R. Kaiser, C. Westbrook, and F. David (Springer-Verlag, Berlin, 2001). [7] W. Ketterle, D. S. Durfee, and D. M. Stamper-Kurn, in Proceedings of the International School of Physics Enrico Fermi, edited by M. Inguscio, S. Stringari, and C. E. Wieman (IOS Press, Amsterdam, 1999). [8] L. J. Garay, J. R. Anglin, J. I. Cirac, and P. Zoller, Phys. Rev. Lett. 85, 4643 (2000). [9] L. J. Garay, J. R. Anglin, J. I. Cirac, and P. Zoller, Phys. Rev. A 63, 02361 (2001). [10] T. Padmanabhan, Phys. Rev. D 59, 124012 (1999). [11] U. Leonhardt, T. Kiss, and P. Ohberg, Phys. Rev. A 67, 033602 (2003). [12] S. Corley and T. Jacobson, Phys. Rev. D 59, 124011 (1999). [13] K. D. Kokkotas and B. G. Schmidt, Living Rev. Relativity 2, 2 (1999), http://www.livingreviews.org/lrr-1999-2. [14] W. G. Unruh, Phys. Rev. Lett. 46, 1351 (1981). [15] M. Visser, Classical Quantum Gravity 15, 1767 (1998).
dspace.entity.typePublication
relation.isAuthorOfPublication5638c18d-1c35-40d2-8b77-eb558c27585e
relation.isAuthorOfPublication.latestForDiscovery5638c18d-1c35-40d2-8b77-eb558c27585e

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Garay21.pdf
Size:
2.67 MB
Format:
Adobe Portable Document Format

Collections