Specializations and a local homeomorphism theorem for real Riemann surfaces of rings
dc.contributor.author | Puente Muñoz, María Jesús De La | |
dc.date.accessioned | 2023-06-20T16:48:19Z | |
dc.date.available | 2023-06-20T16:48:19Z | |
dc.date.issued | 1996-12 | |
dc.description.abstract | Let phi : k --> A and f : A --> R be ring morphisms, R a real ring. We prove that if f : A --> R is etale, then the corresponding mapping between real Riemann surfaces S-r(f) : S-r(R/k) --> S-r(A/k) is a local homeomorphism. Several preparatory results are proved, as well. The most relevant among these are: (1) a Chevalley's theorem for real Riemann surfaces on the preservation of constructibility via S-r(f), and (2) an analysis of the closure operator on real Riemann surfaces. Constructible sets are dealt with by means of a suitable first-order language. | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/12782 | |
dc.identifier.issn | 0030-8730 | |
dc.identifier.officialurl | http://projecteuclid.org/pjm | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/57073 | |
dc.issue.number | 2 | |
dc.journal.title | Pacific Journal of Mathematics | |
dc.language.iso | eng | |
dc.page.final | 442 | |
dc.page.initial | 427 | |
dc.publisher | Pacific Journal of Mathematics | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 512.7 | |
dc.subject.ucm | Geometria algebraica | |
dc.subject.unesco | 1201.01 Geometría Algebraica | |
dc.title | Specializations and a local homeomorphism theorem for real Riemann surfaces of rings | |
dc.type | journal article | |
dc.volume.number | 176 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 630e203d-3f7d-46d6-a43c-cb07da8c4b71 | |
relation.isAuthorOfPublication.latestForDiscovery | 630e203d-3f7d-46d6-a43c-cb07da8c4b71 |
Download
Original bundle
1 - 1 of 1