Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA Disculpen las molestias.
 

L-P-Analogues of Bernstein and Markov Inequalities

dc.contributor.authorMuñoz-Fernández, Gustavo A.
dc.contributor.authorSánchez, V.M.
dc.contributor.authorSeoane Sepúlveda, Juan Benigno
dc.date.accessioned2023-06-20T00:18:19Z
dc.date.available2023-06-20T00:18:19Z
dc.date.issued2011-01
dc.description.abstractLet parallel to . parallel to(infinity) denote the sup norm on [-1,1]. If x is an element of [-1,1] is fixed and M-m,M-n(x) is the best constant in vertical bar p'(x)vertical bar <= M-m,M-n(x)parallel to p parallel to(infinity), for all trinomials p of the form p(x) = ax(m) + bx(n) + c with a, b, c is an element of R, then the exact value of M-m,M-n(x) is known for large families of pairs (m,n) is an element of N-2. Here we consider the same problem for L-p-norms.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipSpanish Ministry of Education
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/16897
dc.identifier.issn1331-4343
dc.identifier.relatedurlhttp://mia.ele-math.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/42363
dc.issue.number1
dc.journal.titleMathematical Inequalities & Applications
dc.language.isoeng
dc.page.final145
dc.page.initial135
dc.publisherElement
dc.relation.projectIDMTM2009-07848; MTM2008-02652
dc.rights.accessRightsrestricted access
dc.subject.cdu517.518.28
dc.subject.keywordBernstein and Markov type inequality
dc.subject.keywordtrinomial
dc.subject.ucmFunciones (Matemáticas)
dc.subject.unesco1202 Análisis y Análisis Funcional
dc.titleL-P-Analogues of Bernstein and Markov Inequalities
dc.typejournal article
dc.volume.number14
dcterms.referencesS. BERNSTEIN, Sur L’ordre de la meilleure approximation des fonctions continues par des polynomes de degr´e donn´e, Memoires de l’Acad´emie Royale de Belgique, 4 (1912), 1–103. R. P. BOAS, Inequalities for the derivatives of polynomials, Math. Mag., 42 (1969), 165–174. P. BORWEIN AND T. ERDÉLYI, Polynomials and polynomial inequalities, Graduate Texts in Mathematics, 161, Springer-Verlag, New York, 1995. R. J. DUFFIN AND A. C. SCHAEFFER, On some inequalities of S. Bernstein and W. Markoff, Bull. Amer. Math. Soc., 44 (1938), 289–297. L. A. HARRIS, Bounds on the derivatives of holomorphic functions of vectors, Colloque D’Analyse (Rio de Janeiro, 1972), 145–163, ed. L. Nachbin, Act. Sc. et Ind., 1367, Herman, Paris, 1975. L. A. HARRIS, Multivariate Markov polynomial inequalities and Chebyshev nodes, J. Math. Anal. Appl., 338 (2008), 350–357. A. A. MARKOV, On a problem of D. I. Mendeleev (Russian), Zap. Im. Akad. Nauk., 62 (1889), 1–24. A. A. MARKOV, On a question by D. I. Mendeleev, Electronic article to downloaded from http://www.math.technion.ac.il/hat/papers.html. V. MARKOV, Über Polynome, die in einen gegebenen Intervalle möglichst wenig von Null abweichen, Math. Ann. 77 (1916), 213–258. G. A. MUÑOZ-FERNÁNDEZ AND Y. SARANTOPOULOS, Bernstein and Markov-type inequalities for polynomials on real Banach spaces, Math. Proc. Camb. Phil. Soc., 133 (2002), 515–530. G. A. MUÑOZ-FERNÁNDEZ AND J.B. SEOANE-SEPÚLVEDA, Geometry of Banach spaces of Trinomials, J. Math. Anal. Appl., 340 (2008), 1069–1087. G. A. MUÑOZ-FERNÁNDEZ, Y. SARANTOPOULOS AND J.B. SEOANE-SEPÚLVEDA,An application of the Krein-Milman Theorem to Bernstein and Markov inequalities, J. Convex Anal., 15 (2008), 299–312. G. A. MUÑOZ-FERNÁNDEZ, V.M. SÁNCHEZ AND J.B. SEOANE-SEPÚLVEDA, Estimates on the derivative of a polynomial with a curved majorant using convex techniques, J. Convex Anal., 17 (2010) 241–252. S. NEUWIRTH, The maximum modulus of a trigonometric trinomial, J. Anal. Math., 104 (2008), 371–396. Q. I. RAHMAN, On a problem of Turán about polynomials with curved majorants, Trans.Amer.Math.Soc., 163 (1972), 447–455. Q. I. RAHMAN AND G. SCHMEISSER,Analytic theory of polynomials, London Mathematical Society Monographs. New Series, 26. The Clarendon Press, Oxford University Press, Oxford, 2002. Y. SARANTOPOULOS,Bounds on the derivatives of polynomials on Banach spaces, Math. Proc. Camb. Phil. Soc., 110 (1991), 307–312. V. I. SKALYGA, Analogues of the Markov and Bernstein inequalities for polynomials in Banach spaces, Izv. Math., 61 (1998), 143–159. V. I. SKALYGA, Analogues of the Markov and Benstein inequalities on convex bodies in Banach spaces, Izv. Math., 62 (1998), 375–397. V. I. SKALYGA, Bounds on the derivatives of polynomials on entrally symmetric convex bodies (Russian), Izv. Ross. Akad. Nauk Ser. Mat., 69 (2005), 179–192; translation in Izv. Math., 69 (2005), 607–621. D. R. WILHELMSEN,A Markov inequality in several dimensions, J. Approx. Theory, 11 (1974), 216–220.
dspace.entity.typePublication
relation.isAuthorOfPublicatione85d6b14-0191-4b04-b29b-9589f34ba898
relation.isAuthorOfPublication.latestForDiscoverye85d6b14-0191-4b04-b29b-9589f34ba898

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
MunozFer05.pdf
Size:
205.32 KB
Format:
Adobe Portable Document Format

Collections