Q-switched operation with carbon-based saturable absorbers in a Nd:YLF Laser

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
Google Scholar
Research Projects
Organizational Units
Journal Issue
We have numerically studied the influence of the absorption modulation depth of carbon-based saturable absorbers (graphene and carbon nanotubes (CNTs)) on the Q-switched regime of a diode-pumped Nd:YLF laser. A short-length cavity was used with an end mirror on which CNTs or mono- or bi-layer graphene were deposited, forming a saturable absorber mirror (SAM). Using a standard model, the generated energy per pulse was calculated, as well as the pulse duration and repetition rate. The results show that absorbers with higher modulation depths, i.e., graphene, deliver higher energy pulses at lower repetition rates. However, the pulse duration did not have a monotonic behavior and reaches a minimum for a given low value of the modulation depth typical of CNTs.
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This work has been financed by the Universidad Complutense de Madrid through Project GR3/14-910133.
1. Koechner, W. Solid-State Laser Engineering; Rhodes, W.T., Ed.; Springer Series in Optical Sciences; Springer: New York, NY, USA, 2006; pp. 522–528 and pp. 542–556. 2. Cheng, K.; Zhao, S.Z.; Yang, K.J.; Li, G.Q.; Li, D.C.; Zhang, G.; Zhao, B.; Wang, Y.G. Diode-pumped passively Q-switched Nd:Lu0:33Y0:37Gd0:3VO4 laser using a single-walled carbon nanotube saturable absorber. Laser Phys. Lett. 2011, 8, 418–422. 3. Set, S.Y.; Yaguchi, H.; Tanaka, Y.; Jablonski, M. Laser mode locking using a saturable absorber incorporating carbon nanotubes. J. Lightwave Technol. 2004, 22, 51–56. 4. Schibli, T.R.; Minoshima, K.; Kataura, H.; Itoga, E.; Minami, N.; Kazaoui, S.; Miyashita, K.; Tokumoto, M.; Sakakibara, Y. Ultrashort pulse-generation by saturable absorber mirrors based on polymer-embedded carbon nanotubes. Opt. Express 2005, 13, 8025–8031. 5. Schmidt, A.; Rivier, S.; Steinmeyer, G.; Yim, J.H.; Cho,W.B.; Lee, S.; Rotermund, F.; Pujol, M.C.; Mateos, X.; Aguiló, M.; et al. Passive mode locking of Yb:KLuW using a single-walled carbon nanotube saturable absorber. Opt. Lett. 2008, 33, 729–731. 6. Cho, W.B.; Schmidt, A.; Yim, J.H.; Choi, S.Y.; Lee, S.; Rotermund, F.; Griebner, U.; Steinmeyer, G.; Petrov, V.; Mateos, X.; et al. Passive mode locking of a Tm-doped bulk laser near 2 _m using a carbon nanotube saturable absorber. Opt. Express. 2009, 17, 11007–11011. 7. Cheng, K.; Lin, Y.; Yamashita, S.; Lin, G. Harmonic Order-Dependent Pulsewidth Shortening of a Passively Mode-Locked Fiber Laser With a Carbon Nanotube Saturable Absorber. IEEE Photonics J. 2012, 4, 1542–1552. 8. Cheng, K.; Lin, Y.; Lin, G. Single- and double-walled carbon nanotube based saturable absorbers for passive mode locking of an erbium-doped fiber laser. Laser Phys. 2013, doi:10.10 88/1054-660X/23/4/045105. 9. Cho, W.B.; Kim, J.W.; Lee, H.W.; Bae, S.; Hong, B.H.; Choi, S.Y.; Baek, I.H.; Kim, K.; Yeom, D.; Rotermund, F. High-quality, large-area monolayer graphene for efficient bulk laser mode locking near 1.25 _m. Opt. Lett. 2011, 36, 4089–4091. 10. Matía-Hernando, P.; Guerra, J.M.; Weigand, R. An Nd:YLF laser q-switched by a monolayer-graphene saturable-absorber mirror. Laser Phys. 2013, doi:10.1088/1054-660X/23/2/025003. 11. Xie, G.Q.; Ma, J.; Lv, P.; Gao, W.L.; Yuan, P.; Qian, L.J.; Yu, H.H.; Zhang, H.J.; Wang, J.Y.; Tang, D.Y. Graphene saturable absorber for Q-switching and mode locking at 2 _m wavelength. Opt. Mater. Express 2012, 2, 878–883. 12. Li, X.L.; Xu, J.L.; Wu, Y.Z.; He, J.L.; Hao, X.P. Large energy laser pulses with high repetition rate by graphene Q-switched solid-state laser. Opt. Express 2011, 19, 9950–9955. 13. Wang, Z.T.; Zou, Y.H.; Chen, Y.; Wu, M.; Zhao, C.J.; Zhang, H.; Wen, S.C. Graphene sheet stacks for Q-switching operation of an erbium-doped fiber laser. Laser Phys. Lett. 2013, doi:10.1088/1612-2011/10/7/075102. 14. Husaini, S.; Bedford, R.G. Graphene saturable absorber for high power semiconductor disk laser mode locking. Appl. Phys. Lett. 2014, doi:10.1063/1.4872258. 15. Huang, P.L.; Lin, S.; Yeh, C.; Kuo, H.; Huang, S.; Lin, G.; Li, L.; Su, C.; Cheng, W. Stable mode-locked fiber laser based on CVD fabricated graphene saturable absorber. Opt. Express 2012, 20, 2460–2465. 16. Lin, Y.; Yang, C.; Liou, J.; Yu, C.; Lin, G. Using graphene nano-particle embedded in photonic crystal fiber for evanescent wave mode locking of fiber laser. Opt. Express 2013, 21, 16763–16776. 17. Sali, E.; Ignesti, E.; Cavalieri, S.; Fini, L.; Tognetti, M.; Bu, R. A tuneable, single-mode titanium-doped-sapphire laser source with variable pulse duration in the nanosecond regime. Opt. Commun. 2009, 282, 3330–3334. 18. Sali, E.; Ignesti, E.; Cavalieri, S.; Fini, L.; Tognetti, M.; Bu, R. A titanium-doped-sapphire laser source with tunable frequency, single-mode emission, and adjustable pulse duration. Laser Phys. 2010, 20, 1126–1131. 19. Weigand, R.; Pinto, T.; Crespo, H.M.; Guerra, J.M. On the Q-switched operation of Titanium: Sapphire lasers using a graphene-based saturable absorber mirror. Opt. Laser Technol. 2015, 72, 1–5. 20. Spühler, G.J.; Paschotta, R.; Fluck, R.; Braun, B.; Moser, M.; Zhang, G.; Gini, E.; Keller, U. Experimentally confirmed design guidelines for passively Q-switched microchip lasers using semiconductor saturable absorbers. J. Opt. Soc. Am. B 1999, 33, 376–388. 21. Haus, H. Parameter ranges for cw passive mode locking. IEEE J. Quantum Electron. 1976, 12, 169–176. 22. Pollack, T.M.; Wing, W.F.; Grasso, R.J.; Chicklis, E.P.; Jenssen, H.P. Cw laser operation of Nd:YLF. IEEE J. Quantum Electron. 1982, 18, 159–163. 23. Frei, B.; Balmer, J.E. 1053-nm-wavelength selection in a diode-laser-pumped Nd:YLF laser. Appl. Opt. 1994, 33, 6942–6946.