A Note on the Cahn-Hilliard Equation in H1 (R N ) Involving Critical Exponent
dc.contributor.author | Cholewa, Jan W. | |
dc.contributor.author | Rodríguez Bernal, Aníbal | |
dc.date.accessioned | 2023-06-19T14:56:24Z | |
dc.date.available | 2023-06-19T14:56:24Z | |
dc.date.issued | 2014 | |
dc.description.abstract | We consider the Cahn-Hilliard equation in H1(RN ) with two types of critically growing nonlinearities: nonlinearities satisfying a certain limit condition as |u| → ∞ and logistic type nonlinearities. In both situations we prove the H2(RN )-bound on the solutions and show that the individual solutions are suitably attracted by the set of equilibria. This complements the results in the literature; see J.W. Cholewa, A. Rodriguez-Bernal (2012) | |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Ministerio de Economia y Competitividad, Spain | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/33265 | |
dc.identifier.issn | 0862-7959 | |
dc.identifier.officialurl | http://dml.cz/bitstream/handle/10338.dmlcz/143854/MathBohem_139-2014-2_13.pdf | |
dc.identifier.relatedurl | http://mb.math.cas.cz/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/34877 | |
dc.issue.number | 2 | |
dc.journal.title | Mathematica Bohemica | |
dc.language.iso | eng | |
dc.page.final | 283 | |
dc.page.initial | 269 | |
dc.publisher | Institute of Mathematics, Academy of Sciences of the Czech Republic | |
dc.relation.projectID | MTM2012-31298 | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 517.9 | |
dc.subject.keyword | Initial value problem for higher order parabolic equations | |
dc.subject.keyword | asymptotic behavior of solutions | |
dc.subject.keyword | critical exponent | |
dc.subject.ucm | Ecuaciones diferenciales | |
dc.subject.unesco | 1202.07 Ecuaciones en Diferencias | |
dc.title | A Note on the Cahn-Hilliard Equation in H1 (R N ) Involving Critical Exponent | |
dc.type | journal article | |
dc.volume.number | 139 | |
dcterms.references | J. M. Arrieta, A. N. Carvalho, A. Rodríguez-Bernal: Parabolic problems with nonlinear boundary conditions and critical nonlinearities. J. Differ. Equations 156 (1999), 376–406. J. M. Arrieta, J.W. Cholewa, T. Dlotko, A. Rodríguez-Bernal: Asymptotic behavior and attractors for reaction diffusion equations in unbounded domains. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 56 (2004), 515–554. J. M. Arrieta, A. Rodriguez-Bernal, J. W. Cholewa, T. Dlotko: Linear parabolic equations in locally uniform spaces. Math. Models Methods Appl. Sci. 14 (2004), 253–293. D. Blömker, S. Maier-Paape, T. Wanner: Spinodal decomposition for the Cahn-HilliardCook equation. Commun. Math. Phys. 223 (2001), 553–582. D. Blömker, S. Maier-Paape, T.Wanner: Second phase spinodal decomposition for the Cahn-Hilliard-Cook equation. Trans. Am. Math. Soc. 360 (2008), 449–489. A. Bonfoh: Finite-dimensional attractor for the viscous Cahn-Hilliard equation in an unbounded domain. Q. Appl. Math. 64 (2006), 93–104. J. Bricmont, A. Kupiainen, J. Taskinen: Stability of Cahn-Hilliard fronts. Commun. Pure Appl. Math. 52 (1999), 839–871. L. A. Caffarelli, N. E. Muler: An L∞ bound for solutions of the Cahn-Hilliard equation. Arch. Ration. Mech. Anal. 133 (1995), 129–144. J.W. Cahn, J. E. Hilliard: Free energy of a nonuniform system. I: Interfacial free energy. J. Chem. Phys. 28 (1958), 258–267. A. N. Carvalho, J. W. Cholewa: Continuation and asymptotics of solutions to semilinear parabolic equations with critical nonlinearities. J. Math. Anal. Appl. 310 (2005),557–578. A. N. Carvalho, T. Dlotko: Dynamics of the viscous Cahn-Hilliard equation. J. Math. Anal. Appl. 344 (2008), 703–725. J.W. Cholewa, T. Dlotko: Global attractor for the Cahn-Hilliard system. Bull. Aust. Math. Soc. 49 (1994), 277–292. J.W. Cholewa, T. Dlotko: Global Attractors in Abstract Parabolic Problems. London Mathematical Society Lecture Note Series 278, Cambridge University Press, Cambridge, 2000. J.W. Cholewa, A. Rodriguez-Bernal: Dissipative mechanism of a semilinear higher order parabolic equation in R N . Nonlinear Anal., Theory Methods Appl., Ser. A,Theory Methods 75 (2012), 3510–3530. J.W. Cholewa, A. Rodriguez-Bernal: On the Cahn-Hilliard equation in H1(R N ). J. Differ. Equations 253 (2012), 3678–3726. J.W. Cholewa, A. Rodriguez-Bernal: Critical and supercritical higher order parabolic problems in R N . Nonlinear Anal., Theory Methods Appl., Ser.A, Theory Methods 104 (2014), 50–74. T. Dlotko, M. B. Kania, C. Sun: Analysis of the viscous Cahn-Hilliard equation in R N . J. Differ. Equations 252 (2012), 2771–2791. L. Duan, S. Liu, H. Zhao: A note on the optimal temporal decay estimates of solutions to the Cahn-Hilliard equation. J. Math. Anal. Appl. 372 (2010), 666–678. C. M. Elliott, A. M. Stuart: Viscous Cahn-Hilliard equation II: Analysis. J. Differ. Equations 128 (1996), 387–414. D. J. Eyre: Systems of Cahn-Hilliard Equations. University of Minnesota, AHPCRC Preprint 92–102, 1992. M. Grasselli, G. Schimperna, S. Zelik: Trajectory and smooth attractors for CahnHilliard equations with inertial term. Nonlinearity 23 (2010), 707–737 J. K. Hale: Asymptotic Behavior of Dissipative Systems. Mathematical Surveys and Monographs 25, American Mathematical Society, Providence, 1988. D. Henry: Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Mathematics 840, Springer, Berlin, 1981. T. Kato: The Cauchy problem for quasi-linear symmetric hyperbolic systems. Arch. Ration. Mech. Anal. 58 (1975), 181–205. T. Korvola, A. Kupiainen, J. Taskinen: Anomalous scaling for three-dimensional CahnHilliard fronts. Commun. Pure Appl. Math. 58 (2005), 1077–1115. D. Li, C. Zhong: Global attractor for the Cahn-Hilliard system with fast growing nonlinearity. J. Differ. Equations 149 (1998), 191–210. S. Liu, F.Wang, H. Zhao: Global existence and asymptotics of solutions of the CahnHilliard equation. J. Differ. Equations 238 (2007), 426–469. A. Miranville: Long-time behavior of some models of Cahn-Hilliard equations in deformable continua. Nonlinear Anal., Real World Appl. 2 (2001), 273–304. A. Miranville: Asymptotic behavior of the Cahn Hilliard-Oono equation. J. Appl. Anal. Comput. 1 (2011), 523–536. A. Novick-Cohen: On the viscous Cahn-Hilliard equation. Material instabilities in continuum mechanics. Proc. Symp., Heriot-Watt University, Edinburgh, 1985/86 (J. M. Ball,ed.). Oxford Science Publications, Clarendon Press, Oxford, 1988, pp. 329–342. A. Novick-Cohen: The Cahn-Hilliard equation. Handbook of Differential Equations: Evolutionary Equations IV. Elsevier/North-Holland, Amsterdam, 2008, pp. 201–228. R. Temam: Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Applied Mathematical Sciences 68, Springer, New York, 1988. H. Triebel: Interpolation Theory, Function Spaces,Differential Operators. North-Holland Mathematical Library 18, North-Holland Publishing Company, Amsterdam, 1978. S. Zelik, J. Pennant: Global well-posedness in uniformly local spaces for the CahnHilliard equations in R3. Commun. Pure Appl. Anal. 12 (2013), 461–480. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | fb7ac82c-5148-4dd1-b893-d8f8612a1b08 | |
relation.isAuthorOfPublication.latestForDiscovery | fb7ac82c-5148-4dd1-b893-d8f8612a1b08 |
Download
Original bundle
1 - 1 of 1