Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Churn and Net Promoter Score forecasting for business decision-making through a new stepwise regression methodology

dc.contributor.authorVélez Serrano, Daniel
dc.contributor.authorAyuso, Alicia
dc.contributor.authorPerales González, Carlos
dc.contributor.authorRodríguez González, Juan Tinguaro
dc.date.accessioned2024-01-31T08:43:22Z
dc.date.available2024-01-31T08:43:22Z
dc.date.issued2020
dc.description.abstractCompanies typically have to make relevant decisions regarding their clients’ fidelity and retention on the basis of analytical models developed to predict both their churn probability and Net Promoter Score (NPS). Although the predictive capability of these models is important, interpretability is a crucial factor to look for as well, because the decisions to be made from their results have to be properly justified. In this paper, a novel methodology to develop analytical models balancing predictive performance and interpretability is proposed, with the aim of enabling a better decision-making. It proceeds by fitting logistic regression models through a modified stepwise variable selection procedure, which automatically selects input variables while keeping their business logic, previously validated by an expert. In synergy with this procedure, a new method for transforming independent variables in order to better deal with ordinal targets and avoiding some logistic regression issues with outliers and missing data is also proposed. The combination of these two proposals with some competitive machine-learning methods earned the leading position in the NPS forecasting task of an international university talent challenge posed by a well-known global bank. The application of the proposed methodology and the results it obtained at this challenge are described as a case-study.en
dc.description.departmentDepto. de Estadística e Investigación Operativa
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia, Innovación y Universidades (España)
dc.description.sponsorshipComunidad de Madrid
dc.description.sponsorshipUniversidad Complutense de Madrid
dc.description.statuspub
dc.identifier.citationVélez D, Ayuso A, Perales-González C, Rodríguez JT. Churn and Net Promoter Score forecasting for business decision-making through a new stepwise regression methodology. Knowledge-Based Systems 2020;196:105762. https://doi.org/10.1016/j.knosys.2020.105762.
dc.identifier.doi10.1016/j.knosys.2020.105762
dc.identifier.issn0950-7051
dc.identifier.officialurlhttps://doi.org/10.1016/j.knosys.2020.105762
dc.identifier.relatedurlhttps://www.sciencedirect.com/science/article/pii/S0950705120301684
dc.identifier.urihttps://hdl.handle.net/20.500.14352/96876
dc.journal.titleKnowledge-Based Systems
dc.language.isoeng
dc.page.initial105762 (16)
dc.publisherElsevier
dc.relation.projectIDinfo:eu-repo/grantAgreement/MINECO//TIN2015-66471-P/ES/TECNICAS DE OBTENCION, PROCESAMIENTO Y REPRESENTACION DE INFORMACION DIFUSA PARA LA TOMA DE DECISIONES/
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-096509-B-I00/ES/GESTION INTELIGENTE DE INFORMACION BORROSA/
dc.relation.projectIDS2013/ICE-2845
dc.relation.projectIDPR26/16-21B-3
dc.rights.accessRightsrestricted access
dc.subject.keywordChurn prediction
dc.subject.keywordNet promoter score
dc.subject.keywordStepwise regression
dc.subject.keywordWOE variables
dc.subject.ucmEstadística matemática (Matemáticas)
dc.subject.unesco12 Matemáticas
dc.titleChurn and Net Promoter Score forecasting for business decision-making through a new stepwise regression methodologyen
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number196
dspace.entity.typePublication
relation.isAuthorOfPublication1375c631-ecbd-4b51-b213-c7d4148c3eba
relation.isAuthorOfPublicationddad170a-793c-4bdc-b983-98d313c81b03
relation.isAuthorOfPublication.latestForDiscovery1375c631-ecbd-4b51-b213-c7d4148c3eba

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Churn_and_Net_Promoter_Score_forecasting.pdf
Size:
3.09 MB
Format:
Adobe Portable Document Format

Collections