Scanning tunneling microscopy of ultrathin indium intercalated between graphene and SiC using confinement heteroepitaxy

dc.contributor.authorPham, Van Dong
dc.contributor.authorGonzález Pascual, César
dc.contributor.authorDappe, Yannnick J.
dc.contributor.authorDong, Chengye
dc.contributor.authorRobinson, Joshua A.
dc.contributor.authorTrampert, Achim
dc.contributor.authorEngel-Herbert, Roman
dc.date.accessioned2024-11-05T20:03:20Z
dc.date.available2024-11-05T20:03:20Z
dc.date.issued2024-10-28
dc.description.abstractLarge-scale and air-stable two-dimensional metal layers intercalated at the interface between epitaxial graphene and SiC offer an appealing material for quantum technology. The atomic and electronic details, as well as the control of the intercalated metals within the interface, however, remain very limited. In this Letter, we explored ultrathin indium confined between graphene and SiC using cryogenic scanning tunneling microscopy, complemented by first-principle density functional theory. Bias-dependent imaging and tunneling spectroscopy visualize a triangular superstructure with a periodicity of 14.7 ± 3 Å and an occupied state at about −1.6 eV, indicating proof of highly crystalline indium. The scanning tunneling microscopy tip was used to manipulate the number of indium layers below graphene, allowing to identify three monatomic In layers and to tune their corresponding electronic properties with atomic precision. This further allows us to attribute the observed triangular superstructure to be solely emerging from the In trilayer, tentatively explained by the lattice mismatch induced by lattice relaxation in the topmost In layer. Our findings provide a microscopic insight into the structure and electronic properties of intercalated metals within the graphene/SiC interface and a unique possibility to manipulate them with atomic precision using the scanning probe technique.
dc.description.agreementFI-2023-1-0016
dc.description.agreementDMR-2011839
dc.description.agreementDMR-203935
dc.description.departmentDepto. de Física de Materiales
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipUniversidad de Cantabria
dc.description.sponsorshipNational Science Fundation (United States)
dc.description.statuspub
dc.identifier.citationV.D. Pham, C. González, Y.J. Dappe, C. Dong, J.A. Robinson, A. Trampert, and R. Engel-Herbert, “Scanning tunneling microscopy of ultrathin indium intercalated between graphene and SiC using confinement heteroepitaxy,” Applied Physics Letters 125(18), 181602 (2024).
dc.identifier.doi10.1063/5.0223972
dc.identifier.essn1077-3118
dc.identifier.issn0003-6951
dc.identifier.officialurlhttps://doi.org/10.1063/5.0223972
dc.identifier.relatedurlhttps://pubs.aip.org/aip/apl/article/125/18/181602/3318296/Scanning-tunneling-microscopy-of-ultrathin-indium
dc.identifier.urihttps://hdl.handle.net/20.500.14352/110046
dc.issue.number18
dc.journal.titleApplied Physics Letters
dc.language.isoeng
dc.page.final181602-6
dc.page.initial181602-1
dc.publisherAIP Publishing
dc.rights.accessRightsopen access
dc.subject.cdu53
dc.subject.keywordSTM
dc.subject.keywordGraphene
dc.subject.ucmFísica (Física)
dc.subject.unesco22 Física
dc.titleScanning tunneling microscopy of ultrathin indium intercalated between graphene and SiC using confinement heteroepitaxy
dc.typejournal article
dc.type.hasVersionAM
dc.volume.number125
dspace.entity.typePublication
relation.isAuthorOfPublication192ae654-3ce8-4f13-afe2-70550155b6bf
relation.isAuthorOfPublication.latestForDiscovery192ae654-3ce8-4f13-afe2-70550155b6bf

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
APL24-AR-05565-2024-VanDong.pdf
Size:
641.52 KB
Format:
Adobe Portable Document Format

Collections