Aviso: Por labores de mantenimiento y mejora del repositorio, el martes día 1 de Julio, Docta Complutense no estará operativo entre las 9 y las 14 horas. Disculpen las molestias.
 

Lipschitz-type functions on metric spaces

dc.contributor.authorGarrido, M. Isabel
dc.contributor.authorJaramillo Aguado, Jesús Ángel
dc.date.accessioned2023-06-20T09:38:41Z
dc.date.available2023-06-20T09:38:41Z
dc.date.issued2008-04-01
dc.description.abstractIn order to find metric spaces X for which the algebra Lip*(X) of bounded Lipschitz functions on X determines the Lipschitz structure of X, we introduce the class of small-determined spaces. We show that this class includes precompact and quasi-convex metric spaces. We obtain several metric characterizations of this property, as well as some other characterizations given in terms of the uniform approximation and the extension of uniformly continuous functions. In particular we show that X is small-determined if and only if every uniformly continuous real function on X can be uniformly approximated by Lipschitz functions.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipMTM2006-03531 ; MTM2004-07665-C02-02 (Spain)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/16329
dc.identifier.doi10.1016/j.jmaa.2007.08.028
dc.identifier.issn0022-247X
dc.identifier.officialurlhttp://www.sciencedirect.com/science/article/pii/S0022247X0701044X
dc.identifier.relatedurlhttp://www.sciencedirect.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/50100
dc.issue.number1
dc.journal.titleJournal of Mathematical Analysis and Applications
dc.language.isoeng
dc.page.final290
dc.page.initial282
dc.publisherAcademic Press- Elsevier Science
dc.rights.accessRightsrestricted access
dc.subject.cdu517.98
dc.subject.keywordBanach-Stone theorem
dc.subject.keywordLipschitz functions
dc.subject.keywordsmall-determined metric space
dc.subject.keyworduniform approximation
dc.subject.ucmAnálisis funcional y teoría de operadores
dc.titleLipschitz-type functions on metric spaces
dc.typejournal article
dc.volume.number340
dcterms.referencesR.F. Arens, J. Eells, On embedding uniform and topological spaces, Pacific J. Math. 6 (1956) 397–403. Y. Benyamini, J. Lindenstrauss, Geometric Nonlinear Functional Analysis, Amer. Math. Soc. Colloq. Publ., vol. 48, Amer. Math. Soc., Providence, RI, 2000. D. Burago, Y. Burago, S. Ivanov, A Course in Metric Geometry, Grad. Stud. Math., vol. 33, Amer. Math. Soc., Providence, RI, 2001. J. Bustamante, J.R. Arrazola, Homomorphisms on Lipschitz spaces, Monatsh. Math. 129 (2000) 25–30. V.A. Efremovich, The geometry of proximity I, Sb. Math. 31 (1952) 189–200. M.I. Garrido, J.A. Jaramillo, A Banach–Stone theorem for uniformly continuous functions, Monatsh. Math. 131 (2000) 189–192. M.I. Garrido, J.A. Jaramillo, Variations on the Banach–Stone theorem, Extracta Math. 17 (2002) 351–383. M.I. Garrido, J.A. Jaramillo, Homomorphisms on function lattices, Monatsh. Math. 141 (2004) 127–146. M.I. Garrido, F. Montalvo, Countable covers and uniform closure, Rend. Istit. Mat. Univ. Trieste 30 (1999) 91–102. L. Géher, Über fortsetzungs und approximationprobleme für stetige abbildungen von mestrichen raumen, Acta Sci. Math. (Szeged) 20 (1959) 48–66. L. Gillman, J. Jerison, Rings of Continuous Functions, Springer-Verlag, New York, 1976. G. Godefroy, N.J. Kalton, Lipschitz-free Banach spaces, Studia Math. 159 (2003) 121–141. M. Katetov, On real-valued functions on topological spaces, Fund. Math. 38 (1951) 85–91. R. Levy, M.D. Rice, Techniques and examples in U-embedding, Topology Appl. 22 (1986) 157–174. R. Levy, M.D. Rice, U-embedded subsets of normed linear spaces, Proc. Amer. Math. Soc. 97 (1986) 727–733. J. Luukainen, Rings of functions in Lipschitz topology, Ann. Acad. Sci. Fen. 4 (1978/1979) 119–135. E.J. McShane, Extensions of range of functions, Bull. Amer. Math. Soc. 40 (1934) 837–842. D.R. Sherbert, Banach algebras of Lipschitz functions, Pacific J. Math. 13 (1963) 1387–1399. Li Pi Su, Algebraic properties if certain rings of continuous functions, Pacific J. Math. 27 (1968) 175–191. N. Weaver, Lattices of Lipschitz functions, Pacific J. Math. 164 (1994) 179–193. N. Weaver, Lipschitz Algebras, World Scientific, Singapore, 1999.
dspace.entity.typePublication
relation.isAuthorOfPublication8b6e753b-df15-44ff-8042-74de90b4e3e9
relation.isAuthorOfPublication.latestForDiscovery8b6e753b-df15-44ff-8042-74de90b4e3e9

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Jaramillo14.pdf
Size:
152.27 KB
Format:
Adobe Portable Document Format

Collections