A filtration problem with nonlinear Darcy’s law and generalized boundary conditions.
dc.contributor.author | Carrillo Menéndez, José | |
dc.contributor.author | Lyaghfouri, A. | |
dc.date.accessioned | 2023-06-20T16:55:44Z | |
dc.date.available | 2023-06-20T16:55:44Z | |
dc.date.issued | 2000 | |
dc.description.abstract | This article studies a filtration problems with nonlinear Darcy’s law, e.g. ~v = −|rp|q−2rp, where p is the fluid pressure , q > 1, and ~v is the velocity, governed by the mass conservation law div(~v) = 0. This leads to a free boundary problem since the movement of the fluid takes place only in the “wet part” of the domain which is also unknown. The authors give a unified formulation of the problem to include general boundary conditions, such as Dirichlet, Neumann, and so-called leaky boundary conditions. The existence of (weak) solutions is established, for both bounded and unbounded domains, by an approximation method. | |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/15953 | |
dc.identifier.issn | 1079-9389 | |
dc.identifier.officialurl | http://www.aftabi.com/advancesindiffer.html | |
dc.identifier.relatedurl | http://www.aftabi.com | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/57446 | |
dc.issue.number | 4-6 | |
dc.journal.title | Advances in Differential Equations | |
dc.page.final | 555 | |
dc.page.initial | 515 | |
dc.publisher | Khayyam | |
dc.rights.accessRights | metadata only access | |
dc.subject.cdu | 517.9 | |
dc.subject.keyword | Filtration | |
dc.subject.keyword | Dam problem | |
dc.subject.keyword | Variational inequality | |
dc.subject.keyword | Existence | |
dc.subject.ucm | Ecuaciones diferenciales | |
dc.subject.unesco | 1202.07 Ecuaciones en Diferencias | |
dc.title | A filtration problem with nonlinear Darcy’s law and generalized boundary conditions. | |
dc.type | journal article | |
dc.volume.number | 5 | |
dcterms.references | R.A. Adams, ”Sobolev Spaces,” Academic Press, New-York,1975. A. Alonso and J. Carrillo, A unified formulation for the boundary conditions in some convections-diffusion problems, Proc. European conference on Elliptic and Parabolic Problems,Pont-Mousson (June 1994) 325, 51–63, Pitman Research Notes in Mathematics. H.W. Alt, Str¨omungen durch inhomogene poröse Medien mit freie-m Rand, J. für die Reine und Angewandte Mathematik, 305 (1979), 89–115. H.W. Alt, The fluid flow through porous media. Regularity of the free surface, Manuscripta Math., 21 (1977), 255–272. H.W. Alt, A free boundary problem associated with the flow of ground water, Arch. Rat. Mech.Anal., 64 (1977), 111–126. C. Baiocchi, Su un problema di frontiera libera connesso a questioni di idraulica, Ann. Mat.Pura Appl., 92 (1972), 107–127. C. Baiocchi, Free boundary problems in the theory of fluid flow through porous media, Proceedings of the International Congress of Mathematicians - Vancouver (1974), 237–243. C. Baiocchi, Free boundary problems in fluid flows through porous media and variational inequalities, in ”Free Boundary Problems,” proceedings of a seminar held in Pavia (1979), Vol.1 (Roma 1980), 175–191. MR0630719 (83e:76070) V. Barbu, ”Nonlinear Semigroups and Differential Equations in Banach Spaces,” Noordhoff International Publishing, Leyden The Netherlands, 1976. J. Bear, ”Hydraulics of Groundwater,” Mc Graw-Hill, New York, 1979. L. Boccardo, T. Gallouet and F. Murat, Unicité de la solution de certaines équations elliptiques non linéaires, C.R. Acad. Sci. Paris, t. 315, Série I (1992), 1159–1164. H. Brézis, ”Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert,” North Holland, 1973. H. Brézis, D. Kinderlehrer, and G. Stampacchia, Sur une nouvelle formulation du probléme de l’écoulement á travers une digue, C. R. Acd. Sci Paris, Serie A 287 (1978), 711–714. J. Carrillo, An evolution free boundary problem,filtrations of a compressible fluid in a porous medium, Research Notes in Mathematics, Pitman London,Vol. 89 (1983), 97–110. 15. J. Carrillo, On the uniqueness of the solution of the evolution dam problem, Nonlinear Analysis,TMA, 22 (1994), 573–607. J. Carrillo and M. Chipot, On the dam problem,J.Differential Equations, 45 (1982), 234–271. J. Carrillo and M. Chipot, The dam problem with Leaky boundary conditions, Applied Mathematics and Optimization, 28 (1993), 57–85. J. Carrillo and G. Gilardi, La vitesse de propagation dans le probl`eme de la digue, Ann. Fac.Sc. de Toulouse, XI (1990), 7–28. J. Carrillo and A. Lyaghfouri, The dam problem for nonlinear Darcy’s law and Dirichlet boundary conditions, Annal. Scuola Norm. Sup. Pisa, 26 (1998), 453–505. M. Chipot and A. Lyaghfouri, An existence theorem for an unbounded dam with Leaky boundary conditions, Proc. European Conference on Elliptic and Parabolic Problems, Pont-à-Mousson (June 1994) 325, 64–73, Pitman Research Notes in Mathematics. M. Chipot and A. Lyaghfouri, On the uniqueness of the solution of the dam problem with Leaky boundary conditions, Progress in partial differential equations, the Metz surveys, 345,175–186, Pitman Research Notes in Mathematics. M. Chipot and A. Lyaghfouri, The dam problem for nonlinear Darcy’s law and Leaky boundary condition, Mathematical Methods in the Applied Sciences, 20 (1997), 1045–1068. 23. M. Chipot and A. Lyaghfouri, The dam problem for linear Darcy’s law and nonlinear Leaky boundary conditions, Advances in Differential Equations, 3 (1998), 1–50. J.I. Diaz, ”Nonlinear Partial Differential Equations and Free Boundaries,” Vol. I, Elliptic Equations,Pitman Research Notes in Mathematics, 1985. E. Dibenedetto and A. Friedman, Periodic behaviour for the evolutionary dam problem and related free boundary problems, Communs Partial Diff. Eqns., 11 (1986), 1297–1377. A. Friedman, ”Variational Principles and Free-Boundary Problems,” Robert E. Krieger Publishing Company. Malabor, Florida, 1988. A. Friedman and Shav-Yun Huang, The inhomogeneous dam problem with discountinuous permeability, Ann. Scu. Norm. Sup. Pisa, Ser. IV, 14 (1987), 49–77. G. Gilardi, A new approach to evolution free boundary problems, Communs partial diff. Eqns.,4 (1979), 1099–1123; 5 (1980), 983–984. G. Gilardi and D. Kröner, The dam problem in unbounded domains, Ann. Mat. Pura App., 164 (1993), 321–364. G. Gilardi and S. Luckhaus, A regularity result for the solution of the dam problem, Nonlinear Analysis, TMA, 26 (1996), 113–138. R.A. Greenkorn, ”Flow Phenomena in Porous Media,Fundamental and Applications in Petroleum, Water, and Food Production,” Marcel Dekker, New York, Basel 1983. J.L. Lions, ”Quelquesm´ethodes de résolution des probl`emes aux limites non linéaires,” Dunod/Gauthier-Villars, Paris, 1969. A. Lyaghfouri, On the uniqueness of the solution of a nonlinear filtration problem through a porous medium, Calculus of Variations and Partial Differential equations, 6 (1998), 67–94. J.F. Rodrigues, On the dam problem with Leaky boundary condition, Portugaliae Mathematica.,39 - Fasc. 1–4 (1980), 399–411. D.R. Smart, ”Fixed Point Theorems,”Cambridge University Press, 1974. G. Stampacchia, On the filtration of a fluid through a porous mediu-m with variable cross section, Russian Math. Surveys 29 (1974), 89–102. R. Stavre and B.Vernescu, Incompressible fluid flow through a nonhomogeneous and anistropic dam, Nonlinear Anal., 9 (1985), 799–810. A. Torelli, Existence and Uniqueness of the solution of a non steady free boundary problem,Boll. U.M.I. (5) 14-B (1977), 423–466. A. Torelli, On a free boundary value problem connected with a non steady filtration phenomenon,Ann. Sc. Norm. Sup. Pisa, 4 (1977), 33–59. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 48ac980d-beb1-40b0-acec-caec3a109b1c | |
relation.isAuthorOfPublication.latestForDiscovery | 48ac980d-beb1-40b0-acec-caec3a109b1c |