Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

A proof of Thurston's uniformization theorem of geometric orbifolds.

dc.contributor.authorMatsumoto, Yukio
dc.contributor.authorMontesinos Amilibia, José María
dc.date.accessioned2023-06-20T18:47:16Z
dc.date.available2023-06-20T18:47:16Z
dc.date.issued1991
dc.description.abstractThe authors prove that every geometric orbifold is good. More precisely, let X be a smooth connected manifold, and let G be a group of diffeomorphisms of X with the property that if any two elements of G agree on a nonempty open subset of X, then they coincide on X. If Q is an orbifold which is locally modelled on quotients of open subsets of X by finite subgroups of G, then the authors prove that the universal orbifold covering of Q is a (G,X)-manifold. A similar theorem was stated, and the proof sketched, in W. Thurston's lecture notes on the geometry and topology of 3-manifolds.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/22135
dc.identifier.doi10.3836/tjm/1270130498
dc.identifier.issn0387-3870
dc.identifier.officialurlhttp://projecteuclid.org/DPubS/Repository/1.0/Disseminate?view=body&id=pdf_1&handle=euclid.tjm/1270130498
dc.identifier.relatedurlhttp://projecteuclid.org/DPubS?Service=UI&version=1.0&verb=Display&handle=euclid
dc.identifier.urihttps://hdl.handle.net/20.500.14352/58616
dc.issue.number1
dc.journal.titleTokyo Journal of Mathematics
dc.language.isoeng
dc.page.final196
dc.page.initial181
dc.publisherDepartments of Mathematics of Gakushuin University
dc.rights.accessRightsrestricted access
dc.subject.cdu515.1
dc.subject.keywordfinite group action
dc.subject.keywordorbifold covering
dc.subject.keywordgeometry
dc.subject.ucmTopología
dc.subject.ucmGeometría
dc.subject.unesco1210 Topología
dc.subject.unesco1204 Geometría
dc.titleA proof of Thurston's uniformization theorem of geometric orbifolds.
dc.typejournal article
dc.volume.number14
dcterms.referencesA. D. ALEKSANDROV, On completion of a space by polyhedra, Vestnik Leningrad Univ. Ser. Math. Fiz. Khim., 9:2 (1954), 33-43. F. BONAHON and L. SIEBENMANN, The classification of Seifert fibered 3-orbifolds, Low Dimensional Topology, ed. by R. Fenn, London Math. Soc. Lecture Note Series, 85(1985),19-85. A. DRESS, Newman’s theorems on transformation groups, Topology, 8 (1969), 203-207. W. D. DUNBAR, Geometric orbifolds, Revista Mat. Univ. Compl. Madrid, 1 (1988), 67-99. R. H. Fox, Covering spaces with singularities, Algebraic Geometry and Topology,Princeton Univ. Press (1957), 243-257. J. H. V. HUNT, Branched coverings as uniform completions of unbranched coverings (Résumé), Contemporary Math., 12 (1982), 141-155. M. KATO, On uniformization of orbifolds, Adv. Stud. Pure Math., 9 (1986), 149-172. B. MASKIT, On Poincare’s theorem for fundamental polygons, Adv. in Math., 7 (1971), 219-230. J. M. MoNTESINOS, Sobre la conjetura de Poincar\’e y los recubridores ramificados sobre un nudo, Ph. D. Theses, Univ. Compl. Madrid (1971). L. P. NEUWIRTH, Knot Groups, Ann. Math. Stud., 56 (1965), Princeton Univ. Press. M. H. A. NEWMAN, A theorem on periodic transformations of spaces, Quart. J. Math., 2 (1931), 1-8. I. SATAKE, On a generalization of the notion of manifolds, Proc. Nat. Acad. Sci. USA, 42 (1956), 359-363. H. SEIFERT, Komplexe mit Seitenzuordenung, Nachr. Akad. Wiss. Göttingen Math. Phys. Kl. II, 6 (1975), 49-80. W. THURSTON, The Geometry and Topology of 3-Manifolds, preprint, Princeton, 1976-79.
dspace.entity.typePublication
relation.isAuthorOfPublication7097502e-a5b0-4b03-b547-bc67cda16ae2
relation.isAuthorOfPublication.latestForDiscovery7097502e-a5b0-4b03-b547-bc67cda16ae2

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
montesinos49.pdf
Size:
1.39 MB
Format:
Adobe Portable Document Format

Collections