Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Sensitivity Characterization of a COTS 90-nm SRAM at Ultra Low Bias Voltage

dc.contributor.authorClemente Barreira, Juan Antonio
dc.contributor.authorHubert, Guillaume
dc.contributor.authorFranco Peláez, Francisco Javier
dc.contributor.authorVila, Francesca
dc.contributor.authorBaylac, Maud
dc.contributor.authorPuchner, Helmut
dc.contributor.authorVelazco, Raoul
dc.contributor.authorMecha López, Hortensia
dc.date.accessioned2023-06-17T21:52:31Z
dc.date.available2023-06-17T21:52:31Z
dc.date.issued2017-08-01
dc.description.abstractThis paper presents the characterization of the sensitivity to 14-MeV neutrons of a Commercial Off-The-Shelf (COTS) 90-nm Static Random Access Memories (SRAMs) manufactured by Cypress Semiconductor, when biased at ultra low voltage. Firstly, experiments exposing this memory at 14-MeV neutrons, when powering it up at bias voltages ranging from 0.5V to 3.3V, are presented and discussed. These results are in good concordance with theoretical predictions issued by the modeling tool MUSCA-SEP 3 (MUlti-SCAles Single Event Phenomena Predictive Platform). Then, this tool has been used to obtain Soft Error Rate (SER) predictions at different altitudes above the Earth’s surface of this device vs. its bias voltage. Finally, the effect of contamination by α articles has also been estimated at said range of bias Voltages.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.departmentDepto. de Arquitectura de Computadores y Automática
dc.description.facultyFac. de Ciencias Físicas
dc.description.facultyFac. de Informática
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Innovación (MICINN)
dc.description.sponsorshipBecas José Castillejo
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/41953
dc.identifier.doi10.1109/TNS.2017.2682984
dc.identifier.issn0018-9499
dc.identifier.officialurlhttps://doi.org/10.1109/TNS.2017.2682984
dc.identifier.urihttps://hdl.handle.net/20.500.14352/17699
dc.issue.number8
dc.journal.titleIEEE transactions on nuclear science
dc.language.isoeng
dc.page.final2195
dc.page.initial2188
dc.publisherIEEE-Inst Electrical Electronics Engineers Inc
dc.relation.projectIDTIN2013- 40968-P
dc.rights.accessRightsopen access
dc.subject.keywordNeutrons
dc.subject.keywordRandom access memory
dc.subject.keywordSensitivity
dc.subject.keywordPower supplies
dc.subject.keywordElectronic mail
dc.subject.keywordPredictive models
dc.subject.keywordContamination
dc.subject.keywordLow-bias voltage
dc.subject.keywordCOTS
dc.subject.keywordSRAM
dc.subject.keywordNeutron tests
dc.subject.keywordRadiation hardness
dc.subject.keywordReliability
dc.subject.keywordSoft error
dc.subject.ucmElectrónica (Física)
dc.subject.ucmFísica nuclear
dc.subject.ucmCircuitos integrados
dc.subject.ucmHardware
dc.subject.unesco2207 Física Atómica y Nuclear
dc.subject.unesco2203.07 Circuitos Integrados
dc.titleSensitivity Characterization of a COTS 90-nm SRAM at Ultra Low Bias Voltage
dc.typejournal article
dc.volume.number64
dcterms.references[1] J. A. Abraham, E. S. Davidson, and J. H. Patel, “Memory System Design for Tolerating Single Event Upsets,” IEEE Tran. Nucl. Sci., vol. 30, pp. 4339–4344, Dec. 1983. [2] J. A. Maestro and P. Reviriego, “Reliability of Single-Error Correction Protected Memories,” IEEE Tran. Reliab., vol. 58, pp. 193–201, Mar. 2009. [3] R. Velazco and F. J. Franco, “Single Event Effects on Digital Integrated Circuits: Origins and Mitigation Techniques,” in IEEE International Symposium on Industrial Electronics, pp. 3322–3327, Jun. 2007. [4] R. C. Baumann, “Radiation-Induced Soft Errors in Advanced Semiconductor Technologies,” IEEE Tran. Dev. Mat. Reliab., vol. 5, pp. 305–316, Sep. 2005. [5] M. P. King et al., “Electron-Induced Single-Event Upsets in Static Random Access Memory,” IEEE Tran. Nucl. Sci., vol. 60, pp. 4122–4129, Dec. 2013. [6] A. Kumar, J. Rabaey, and K. Ramchandran, “SRAM supply voltage scaling: A reliability perspective,” in 10th International Symposium on Quality Electronic Design, pp. 782–787, Mar. 2009. [7] M. M. H. Galib, I. J. Chang, and J. Kim, “Supply Voltage Decision Methodology to Minimize SRAM Standby Power Under Radiation Environment,” IEEE Tran. Nucl. Sci., vol. 62, pp. 1349–1356, Jun. 2015. [8] P. Hazucha et al., “Neutron Soft Error Rate Measurements in a 90-nm CMOS Process and Scaling Trends in SRAM from 0.25-um to 90-nm Generation,” in IEEE International Electron Devices Meeting (IEDM), pp. 21.5.1–21.5.4, Dec. 2003. Available at: http://doi10.1109/IEDM.2003.1269336. [9] H. Fuketa, M. Hashimoto, Y. Mitsuyama, and T. Onoye, “Neutron-Induced Soft Errors and Multiple Cell Upsets in 65-nm 10T Subthreshold SRAM,” IEEE Tran. Nucl. Sci., vol. 58, pp. 2097–2102, Aug. 2011. [10] J. A. Clemente et al., “Single Events in a COTS Soft-Error Free SRAM at Low Bias Voltage Induced by 15 MeV Neutrons,” IEEE Tran. Nucl. Sci., vol. 63, pp. 2072–2079, Aug. 2016. [11] F. Villa, M. Baylac, S. Rey, O. Rossetto, W. Mansour, P. Ramos, R. Velazco, and G. Hubert, “Accelerator-Based Neutron Irradiation of Integrated Circuits at GENEPI2 (France),” in IEEE Radiation Effects Data Workshop (REDW), pp. 1–5, July 2014. Available at: http://dx.doi.org/10. 1109/REDW.2014.7004511. [12] F. Villa et al., “Multipurpose applications of the accelerator-based neutron source[1pt] GENEPI2,” Nuovo Cimento C Geophysics Space Physics C, vol. 38, p. 182, Nov. 2016. Available at: http://adsabs.harvard.edu/abs/2016NCimC..38..182V. [13] G. Hubert, S. Duzellier, C. Inguimbert, C. Boatella-Polo, F. Bezerra, and R. Ecoffet, “Operational SER Calculations on the SAC-C Orbit Using the Multi-Scales Single Event Phenomena Predictive Platform (MUSCA-SEP3),” IEEE Tran. Nucl. Sci., vol. 56, pp. 3032–3042, Dec. 2009. [14] J. A. Clemente, G. Hubert, F. J. Franco, F. Villa, M. Baylac, H. Mecha,and R. Velazco, “Evaluation of the Sensitivity of a COTS 90-nm SRAM Memory at Low Bias Voltage,” in 16th European Conference on Radiation Effects on Components and Systems (RADECS), Sep. 2016. [15] J. A. Clemente et al., “Statistical Anomalies of Bitflips in SRAMs to Discriminate SBUs From MCUs,” IEEE Tran. Nucl. Sci., vol. 63, pp. 2087–2094, Aug. 2016. [16] R. Velazco et al., “Evidence of the Robustness of a COTS Soft-Error Free SRAM to Neutron Radiation,” IEEE Tran. Nucl. Sci., vol. 61, pp. 3103–3108, Dec. 2014. [17] International Technology Roadmap for Semiconductors (ITRS), “http://www.itrs2.net/,” 2016. [18] A. Hands, P. Morris, K. Ryden, and C. Dyer, “Large-Scale Multiple Cell Upsets in 90 nm Commercial SRAMs During Neutron Irradiation,”IEEE Tran. Nucl. Sci., vol. 59, pp. 2824–2830, Dec. 2012. [19] AWE Radiation Sciende homepage [Online]., “http://www.awe.co.uk/what-we-do/science-engineering-technology/radiation-science/,” 2016. [20] A. Samaras, “Single Event Upset cross section dose dependence on 90nm SRAM, ESA/ESTEC,” 2013. Available at https://escies.org/download/webDocumentFile?id=60351. [21] R. Pawlowski et al., “Characterization of Radiation-Induced SRAM and Logic Soft Errors from 0.33V to 1.0V in 65nm CMOS,” in IEEE Proceedings of the Custom Integrated Circuits Conference (CICC), Sep. 2014. Available at: http://dx.doi.org/10.1109/CICC.2014.6946138. [22] G. Hubert and A. Cheminet, “Radiation Effects Investigations Based on Atmospheric Radiation Model (ATMORAD) Considering GEANT4 Simulations of Extensive Air Showers and Solar Modulation Potential,” Radiat. Res., vol. 184, pp. 83–94, July 2015. [23] L. Artola et al., “SEU Prediction From SET Modeling Using Multi-Node Collection in Bulk Transistors and SRAMs Down to the 65 nm Technology Node,” IEEE Tran. Nucl. Sci., vol. 58, pp. 1338–1346, Jun. 2011. [24] L. Artola et al., “In Flight SEU/MCU Sensitivity of Commercial Nanometric SRAMs: Operational Estimations,” IEEE Tran. Nucl. Sci., vol. 58, pp. 2644–2651, Dec. 2011. [25] M. Raine et al., “Impact of the Radial Ionization Profile on SEE Prediction for SOI Transistors and SRAMs Beyond the 32-nm Technological Node,” IEEE Tran. Nucl. Sci., vol. 58, pp. 840–847, Jun. 2011. [26] G. Hubert and R. Ecoffet, “Operational Impact of Statistical Properties of Single Event Phenomena for On-Orbit Measurements and Predictions Improvement,” IEEE Tran. Nucl. Sci., vol. 60, pp. 3915–3923, Oct. 2013. [27] B. D. Sierawski et al., “Impact of Low-Energy Proton Induced Upsets on Test Methods and Rate Predictions,” IEEE Tran. Nucl. Sci., vol. 56, pp. 3085–3092, Dec. 2009. [28] B. D. Sierawski et al., “Muon-Induced Single Event Upsets in Deep-Submicron Technology,” IEEE Tran. Nucl. Sci., vol. 57, pp. 3273–3278, Dec. 2010. [29] G. Hubert, L. Artola, and D. Regis, “Impact of scaling on the soft error sensitivity of bulk, FDSOI and FinFET technologies due to atmospheric radiation,” Integration, the VLSI Journal, vol. 50, pp. 39–47, 2015. [30] G. Hubert, P. L. Cavoli, C. Federico, L. Artola, and J. Busto, “Effect of the Radial Ionization Profile of Proton on SEU Sensitivity of Nanoscale SRAMs,” IEEE Tran. Nucl. Sci., vol. 62, pp. 2837–2845, Dec. 2015. [31] L. J. Gleeson and W. I. Axford, “Solar Modulation of Galactic Cosmic Rays,” Astrophy. J., vol. 154, p. 1011, 1968. Available at: http://dx.doi.org/10.1086/149822. [32] A. Cheminet, G. Hubert, V. Lacoste, D. Maurin, and L. Derome, “Cosmic Ray Solar Modulation and Forbush Decrease Analyses Based on Atmospheric Neutron Spectrometry at Mountain Altitude and GEANT4 Simulations of Extensive Air Showers,” J. Geophys. Res.- Space, vol. 118, no. 12, pp. 7488–7496, 2013. [33] G. Hubert, C. Federico, M. Pazianotto, and O. Gonzales, “Long and short-term atmospheric radiation analyses based on coupled measurements at high altitude remote stations and extensive air shower modeling,” Astropart. Phys., vol. 74, no. 1, pp. 27–36, 2016. [34] G. Hubert, “Analyses of cosmic ray induced-neutron based on spectrometers operated simultaneously at mid-latitude and antarctica high-altitude stations during quiet solar activity,” Astropart. Phys., vol. 83, pp. 30–39, 2016. [35] R. Heald, “How Cosmic Rays Cause Computer Downtime,” IEEE Rel. Soc. SCV Meeting, 2005. Available at http://www.ewh.ieee.org/r6/scv/rl/articles/ser-050323-talk-ref.pdf. [36] J. F. Ziegler and H. Puchner, “SER-History, Trends and Challenges,” Cypress Semiconductors, 2004. [37] R. Baumann and E. Smith, “Call for improved ultra-low background alpha-particle emission metrology for the semiconductor industry,” Int. SEMATECH Technology Transfer, vol. #01054118A-XFR, 2001. Available at http://www.sematech.org/docubase/document/4118axfr.pdf. [38] X. Zhu, “Logic SER characterization, Tutorial,” 2008 International Reliability Physics Symposium (IRPS), 2008. [39] A. Lesea, K. Castellani-Coulie, G. Waysand, J. L. Mauff, and C. Sudre, “Qualification Methodology for Sub-Micron ICs at the Low Noise Underground Laboratory of Rustrel,” IEEE Tran. Nucl. Sci., vol. 55, pp. 2148–2153, Aug. 2008. [40] P. Peronnard, R. Velazco, and G. Hubert, “Real-Life SEU Experiments on 90 nm SRAMs in Atmospheric Environment: Measures Versus Predictions Done by Means of MUSCA SEP3 Platform,” IEEE Tran. Nucl. Sci., vol. 56, pp. 3450–3455, Dec. 2009.
dspace.entity.typePublication
relation.isAuthorOfPublication919b239d-a500-4adb-aacf-00206a2c1512
relation.isAuthorOfPublication662ba05f-c2fc-4ad7-9203-36924c80791a
relation.isAuthorOfPublication2363ed06-f92b-4c10-bd9a-87ac2fcce006
relation.isAuthorOfPublication.latestForDiscovery919b239d-a500-4adb-aacf-00206a2c1512

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
FINAL_VERSION.pdf
Size:
1.46 MB
Format:
Adobe Portable Document Format

Collections