Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Learning strategies for sensitive content detection

dc.contributor.authorPovedano Álvarez, Daniel
dc.contributor.authorSandoval Orozco, Ana Lucila
dc.contributor.authorPortela García-Miguel, Javier
dc.contributor.authorGarcía Villalba, Luis Javier
dc.contributor.editorGuo, Zhenhua
dc.date.accessioned2023-12-15T11:05:56Z
dc.date.available2023-12-15T11:05:56Z
dc.date.issued2023-06-01
dc.description.abstractCurrently, the volume of sensitive content on the Internet, such as pornography and child pornography, and the amount of time that people spend online (especially children) have led to an increase in the distribution of such content (e.g., images of children being sexually abused, real-time videos of such abuse, grooming activities, etc.). It is therefore essential to have effective IT tools that automate the detection and blocking of this type of material, as manual filtering of huge volumes of data is practically impossible. The goal of this study is to carry out a comprehensive review of different learning strategies for the detection of sensitive content available in the literature, from the most conventional techniques to the most cutting-edge deep learning algorithms, highlighting the strengths and weaknesses of each, as well as the datasets used. The performance and scalability of the different strategies proposed in this work depend on the heterogeneity of the dataset, the feature extraction techniques (hashes, visual, audio, etc.) and the learning algorithms. Finally, new lines of research in sensitive-content detection are presented.en
dc.description.departmentDepto. de Estadística y Ciencia de los Datos
dc.description.facultyFac. de Estudios Estadísticos
dc.description.refereedTRUE
dc.description.sponsorshipHEROES project
dc.description.sponsorshipEuropean Commission
dc.description.statuspub
dc.identifier.citationPovedano Álvarez, D.; Sandoval Orozco, A.L.; García-Miguel, J.P.; García Villalba, L.J. Learning Strategies for Sensitive Content Detection. Electronics 2023, 12, 2496.
dc.identifier.doi10.3390/ electronics12112496
dc.identifier.essn2079-9292
dc.identifier.officialurlhttps//doi.org/10.3390/ electronics12112496
dc.identifier.relatedurlhttps://www.mdpi.com/2079-9292/12/11/2496
dc.identifier.urihttps://hdl.handle.net/20.500.14352/91319
dc.issue.number11
dc.journal.titleElectronics
dc.language.isoeng
dc.page.final34
dc.page.initial1
dc.publisherMDPI
dc.relation.projectIDGrant agreement No.101021801
dc.rightsAttribution 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.cdu004:37
dc.subject.keywordDeep learning
dc.subject.keywordDigital forensics
dc.subject.keywordImage recognition
dc.subject.keywordSensitive content
dc.subject.keywordSexually explicit content detection
dc.subject.keywordVideo classification
dc.subject.ucmEstadística
dc.subject.ucmInternet (Informática)
dc.subject.unesco1209.03 Análisis de Datos
dc.subject.unesco3307 Tecnología Electrónica
dc.titleLearning strategies for sensitive content detectionen
dc.typejournal article
dc.type.hasVersionAM
dc.volume.number12
dspace.entity.typePublication
relation.isAuthorOfPublicationed0ad6c0-313d-4453-a97b-4bbef9d1d551
relation.isAuthorOfPublicationdea44425-99a5-4fef-b005-52d0713d0e0d
relation.isAuthorOfPublication44f935e8-9acf-4613-ab4d-e007edda7540
relation.isAuthorOfPublication0f67f6b3-4d2f-4545-90e1-95b8d9f3e1f0
relation.isAuthorOfPublication.latestForDiscoveryed0ad6c0-313d-4453-a97b-4bbef9d1d551

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Learning strategies for sensitive....pdf
Size:
3.16 MB
Format:
Adobe Portable Document Format

Collections