Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Improved and customized secondary optics for photo-voltaic concentrators

dc.contributor.authorVázquez Molini, Daniel
dc.contributor.authorÁlvarez Fernández-Balbuena, Antonio
dc.contributor.authorGarcía Botella, Ángel
dc.contributor.authorAlda, Javier
dc.date.accessioned2023-06-18T06:53:00Z
dc.date.available2023-06-18T06:53:00Z
dc.date.issued2015-08-25
dc.descriptionISBN: 978-162841738-8 CODEN: PSISD Copyright 2015. Society of Photo Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.
dc.description.abstractIn this contribution the line flow method is applied to an optimized secondary optics in a photovoltaic concentration system where the primary optics is already defined and characterized. This method is a particular application of photic field theory. This method uses the parameterization of a given primary optics, including actual tolerances of the manufacturing process. The design of the secondary optics is constrained by the selection of primary optics and maximizes the concentration at a previously specified collection area. The geometry of the secondary element is calculated by using a virtual source, which sends light in a first concentration step. This allows us to calculate the line flow for this specific case. This concept allows designing more compact and efficient secondary optics of photovoltaic systems.
dc.description.departmentSección Deptal. de Óptica (Óptica)
dc.description.facultyFac. de Óptica y Optometría
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Economia y Competitividad (MINECO)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/37757
dc.identifier.doi10.1117/12.2187962
dc.identifier.issn0277-786X
dc.identifier.officialurlhttp://dx.doi.org/10.1117/12.2187962
dc.identifier.relatedurlhttp://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=2432124
dc.identifier.urihttps://hdl.handle.net/20.500.14352/24488
dc.issue.number957205
dc.journal.titleProceedings of SPIE, Nonimaging Optics: Efficient Design for Illumination and Solar Concentration XII
dc.language.isoeng
dc.publisherSPIE
dc.relation.projectIDTEC2013-40442
dc.rights.accessRightsopen access
dc.subject.cdu535
dc.subject.cdu620.91
dc.subject.keywordSolar Energy
dc.subject.keywordOptics
dc.subject.keywordPhotovoltaic System
dc.subject.ucmÓptica (Física)
dc.subject.ucmMedio ambiente
dc.subject.unesco2209.19 Óptica Física
dc.subject.unesco2391 Química Ambiental
dc.titleImproved and customized secondary optics for photo-voltaic concentrators
dc.typejournal article
dc.volume.number9572
dcterms.references[1] Vazquez, D., Alvarez, A., Bernabeu, E., Munoz, J., Domingo, A., and Garcia, A., “New concentrador multifocal fresnel lens for improved uniformity design and characterization,” in [Proc SPIE Novel optical design and optimization XII], 7407, 740701 (2009). [2] Winston, R. and Welford, W. T., “Design of nonimaging concentrators as second stages in tandem with image-forming first-stage concentrators,” Appl. Opt. 19, 347–351 (1980). [3] O’Gallagher, J. and Winston, R., “Axially symmetric nonimaging flux concentrators with the maximum theoretical concentration ratio,” J. Opt. Soc. Am. A 4, 123–124 (1987). [4] Winston, R., “Dielectric compound parabolic concentrators,” Appl. Opt. 15(2), 291–292 (1976). [5] Ning, X., Winston, R., and O’Gallaher, J., “Dielectric totally internally reflecting concentrators,” Appl. Opt. 26(2), 300–305 (1987). [6] Winston, R. and Welford, W. T., “Geometrical vector flux and some new nonimaging concentrators,” J. Opt. Soc. Am. A 69(4), 532–536 (1979). [7] Winston, R. and Welford, W., “Ideal flux concentrators as shapes that do not disturb the geometrical vector flux field: A new derivation of the compound parabolic concentrator,” J. Opt. Soc. Am. A 69(4), 536–539 (1979). [8] Moon, P. and Spencer, D. E., [Field theory handbook], Springer-Verlag (1988). [9] Gershun, A., “The light field,” J. Math. Phys, XVIII, 51–151 (1939). [10] Moon, P. and Spencer, D. E., [Photic Field], Massachusetts Institute of Technology Press (1981). [11] Winston, R., Minano, J. C., and Benitez, P., [Nonimaging optics ], Elsevier Academic Press, New York (2005). [12] Garcia, A., Alvarez, A., Vazquez, D., and Bernabeu, E., “Hiperbolic parabolic concentrator (hpc),” Appl. Opt. 48(4), 712–715 (2009). [13] Garcia, A., Alvarez, A., Vazquez, D., and Bernabeu, E., “Field method for concentrador design,” in [Proc. SPIE Novel optical design and optimization XII], 7423, 742307 (2009). [14] Ries, H. R. and Winston, R., “Tailored edge ray reflector for illumination,” J. Opt. Soc. Am. A 32(13), 2243–2251 (1994). [15] Gordon, J. M. and Ries, H. R., “Tailored edge ray concentratorsas ideal second stages for fresnel lens reflectors,” Appl. Opt. 32(13), 2243–2251 (1993). [16] Leutz, R. and Annen, H. P., “Reverse ray-tracing model for the performance evaluation of stationary solar concentrators,” Solar Energy 2007, 761–767 (2007). [17] Minano, J. C., “Design and optimal and ideal 2-d concentrator with the collector immersed in a dielectric tube,” Appl. Opt. 22(24), 3960–3965 (1985).
dspace.entity.typePublication
relation.isAuthorOfPublication304d36ea-328b-4b93-843f-a5f0da3323f8
relation.isAuthorOfPublication66947707-bb8e-476d-8178-cd98a8796992
relation.isAuthorOfPublication.latestForDiscovery304d36ea-328b-4b93-843f-a5f0da3323f8

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Improved and customized-SPIE2016.pdf
Size:
744.5 KB
Format:
Adobe Portable Document Format

Collections