Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Variations on the Banach-Stone theorem

dc.contributor.authorGarrido, M. Isabel
dc.contributor.authorJaramillo Aguado, Jesús Ángel
dc.date.accessioned2023-06-20T18:44:22Z
dc.date.available2023-06-20T18:44:22Z
dc.date.issued2002
dc.descriptionIV Curso Espacios de Banach y Operadores. Laredo, Agosto de 2001.
dc.description.abstractThis paper is based on a series of lectures delivered during a 2001 summer course of the University of Cantabria in Spain. The central theme is the characterization of a topological space X in terms of the topological-algebraic structure of suitably chosen subspaces of the space C(X) of continuous functions on X . A huge variety of corresponding results is presented. After having discussed the classical Banach-Stone theorem, the authors present several more recent results which characterize a locally compact space X through the isometric/isomorphic structure of particular subspaces of C 0 (X) , the space of continuous functions on X which vanish at infinity. Another type of results allows to recover a complete metric space from spaces of bounded uniformly continuous functions, or of Lipschitz continuous functions, which take values in particular Banach spaces. Moreover, the paper contains a number of results regarding the characterization of a space X through algebraic properties of appropriate subspaces of C(X) , e.g., certain subalgebras. The problem of when isomorphy of spaces of differentiable functions on Banach manifolds entails isomorphy of the underlying manifolds is discussed in detail. The final chapter is devoted to the problem to decide when, for complete metric spaces X and Y , the existence of an isomorphism between suitable lattices of functions of uniformly continuous functions on X and Y , respectively, entails that X and Y are uniformly homeomorphic (similar for Lipschitz maps).
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/21378
dc.identifier.issn0213-8743
dc.identifier.officialurlhttp://www.eweb.unex.es/eweb/extracta/
dc.identifier.relatedurlhttp://www.eweb.unex.es
dc.identifier.urihttps://hdl.handle.net/20.500.14352/58482
dc.issue.number3
dc.journal.titleExtracta Mathematicae
dc.language.isoeng
dc.page.final383
dc.page.initial351
dc.publisherUniversidad de Extremadura, Departamento de Matemáticas
dc.rights.accessRightsopen access
dc.subject.cdu517.982.22
dc.subject.cdu515.1
dc.subject.keywordFunction space
dc.subject.keywordLinear metric structure
dc.subject.keywordUniform structure
dc.subject.keywordLipschitz structure
dc.subject.ucmAnálisis funcional y teoría de operadores
dc.subject.ucmTopología
dc.subject.unesco1210 Topología
dc.titleVariations on the Banach-Stone theorem
dc.typejournal article
dc.volume.number17
dcterms.referencesAmir, D., On isomorphisms of continuous function spaces, Israel J. Math., 3 (1966), 205 – 210. Araujo, J., Realcompactness and spaces of vector-valued functions, Fund. Math., 172 (2002), 27 – 40. Araujo, J., Realcompactness and Banach-Stone theorems, Preprint (2001) Mathematics arXiv:math.FA/0010292. Araujo, J., Beckenstein, E., Narici, L., Biseparating maps and homeomorphic real-compactifications, J. Math. Anal. Appl., 192 (1995), 258 –265. Araujo, J., Font, J.J., On Shilov boundaries for subspaces of continuous functions, Topology Appl., 77 (1997), 79 – 85. Araujo, J., Font, J.J., Linear isometries between subspaces of continuous functions, Trans. Amer. Math. Soc., 349 (1997), 413 – 428. Arens, R.F., Kelley, J.L., Characterizations of the space of continuous functions over a compact Hausdorff space, Trans. Amer. Math. Soc., 62 (1947), 499 – 508. Bachir, M., Sur la differentiabilité générique et le théorème de Banach-Stone, C.R. Acad. Sci. Paris, 330 (2000), 687 – 690. Bachir, M., A non-convex analogue to Fenchel duality, J. Funct. Anal., 181 (2001), 300 – 312. Bachir, M., The non-compact Banach-Stone theorem and weak* exposed points, Preprint (2001). Banach, S., “Théorie des Opérations Lineaires”, Warszowa 1932. Reprinted, Clelsea Publishing Company, New York 1963. Behrends, E., “M-structure and the Banach-Stone Theorem”, Springer-Verlag, Berlin 1978. Behrends, E., Cambern, M., An isomorphic Banach-Stone theorem, Studia Math., 90 (1988), 15 – 26. Bistr�om, P., Lindstr�om, M., Homomorphisms on C1(E) and C1¡bounding sets, Monatsh. Math., 115 (1993), 257 – 266. Bochnak, J., Siciak, J., Analytic functions in topological vector spaces, Studia Math., 39 (1971), 77 – 112. Bonic, R.B., Frampton, J., Smooth functions on Banach manifolds, J. Math. Mech., 15 (1966), 877 – 898. Bridson, M.R., Haefliger, A., “Metric Spaces of Non-positive Curvature”, Springer-Verlag, Berlin 1999. Cabello, F., Castillo, J.M.F., Garca, R., Polynomials on dual isomorphic spaces, Ark. Mat., 38 (2000), 37 – 44. Cambern, M., A generalized Banach-Stone theorem, Proc. Amer. Math. Soc., 17 (1966), 396 – 400. Cambern, M., On isomorphisms with small bound, Proc. Amer. Math. Soc., 18 (1967), 1062 – 1066. Cambern, M., Isomorphisms of C0(Y ) onto C0(X), Pacific J. Math., 35 (1970), 307 – 312. Cengiz, B., A generalization of the Banach-Stone theorem, Proc. Amer. Math. Soc., 50 (1973), 426 – 430. Deville, R., Godefroy, G., Zizler, V., “Smoothness and Renormings in Banach Spaces”, Longman Scientific and Technical, Harlow 1993. Dunford, N., Schwartz, J., “Linear Operators I: General theory”, Interscience, New York 1958. Efremovich, V.A., The geometry of proximity I, Math. Sbor., 31 (1952), 189 – 200. Engelking, R., “General Topology”, PWN-Polish Scientific, Warsaw 1977.
dspace.entity.typePublication
relation.isAuthorOfPublication8b6e753b-df15-44ff-8042-74de90b4e3e9
relation.isAuthorOfPublication.latestForDiscovery8b6e753b-df15-44ff-8042-74de90b4e3e9

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Garrido10.pdf
Size:
275.8 KB
Format:
Adobe Portable Document Format

Collections