Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Integrative eQTL analysis of tumor and host omics data in individuals with bladder cancer

dc.contributor.authorPineda Sanjuan, Silvia
dc.contributor.authorVan Steen, Kristel
dc.contributor.authorMalats, Núria
dc.contributor.editorShete, Sanjay
dc.date.accessioned2024-03-20T08:07:04Z
dc.date.available2024-03-20T08:07:04Z
dc.date.issued2017-03-14
dc.description.abstractIntegrative analyses of several omics data are emerging. The data are usually generated from the same source material (i.e., tumor sample) representing one level of regulation. However, integrating different regulatory levels (i.e., blood) with those from tumor may also reveal important knowledge about the human genetic architecture. To model this multilevel structure, an integrative-expression quantitative trait loci (eQTL) analysis applying two-stage regression (2SR) was proposed. This approach first regressed tumor gene expression levels with tumor markers and the adjusted residuals from the previous model were then regressed with the germline genotypes measured in blood. Previously, we demonstrated that penalized regression methods in combination with a permutation-based MaxT method (Global-LASSO) is a promising tool to fix some of the challenges that high-throughput omics data analysis imposes. Here, we assessed whether Global-LASSO can also be applied when tumor and blood omics data are integrated. We further compared our strategy with two 2SR-approaches, one using multiple linear regression (2SR-MLR) and other using LASSO (2SR-LASSO). We applied the three models to integrate genomic, epigenomic, and transcriptomic data from tumor tissue with blood germline genotypes from 181 individuals with bladder cancer included in the TCGA Consortium. GlobalLASSO provided a larger list of eQTLs than the 2SR methods, identified a previously reported eQTLs in prostate stem cell antigen (PSCA), and provided further clues on the complexity of APBEC3B loci, with a minimal false-positive rate not achieved by 2SR-MLR. It also represents an important contribution for omics integrative analysis because it is easy to apply and adaptable to any type of data.
dc.description.departmentDepto. de Estadística y Ciencia de los Datos
dc.description.facultyFac. de Estudios Estadísticos
dc.description.refereedTRUE
dc.description.sponsorshipObra Social Fundación La Caixa
dc.description.sponsorshipInstituto de Salud Carlos III
dc.description.sponsorshipSpanish Ministry of Economy and Competitiveness
dc.description.sponsorshipBelgian Science Policy Office
dc.description.statuspub
dc.identifier.citationPineda, S., Steen, K., & Malats, N. (2017). Integrative eqtl analysis of tumor and host omics data in individuals with bladder cancer. Genetic Epidemiology, 41(6), 567–573.
dc.identifier.doi10.1002/gepi.22053
dc.identifier.essn1098-2272
dc.identifier.issn0741-0395
dc.identifier.officialurlhttps://doi.org/10.1002/gepi.22053
dc.identifier.relatedurlhttps://onlinelibrary.wiley.com/doi/10.1002/gepi.22053
dc.identifier.urihttps://hdl.handle.net/20.500.14352/102396
dc.issue.number6
dc.journal.titleGenetic Epidemiology
dc.language.isoeng
dc.page.final573
dc.page.initial567
dc.publisherWiley-Liss, Inc
dc.relation.projectIDRTICC, #RD12/0036/0050
dc.relation.projectIDFIS, #PI12/00815
dc.relation.projectIDBM1204
dc.rights.accessRightsrestricted access
dc.subject.cdu616-006.04
dc.subject.cdu519.22-76
dc.subject.keywordIntegrative analysis
dc.subject.keywordOmics
dc.subject.keywordLASSO
dc.subject.keywordTwo-stage regression
dc.subject.keywordFalse positives
dc.subject.keywordGermline DNA variants
dc.subject.keywordTumor genome
dc.subject.keywordTumor methylome
dc.subject.keywordGene expression
dc.subject.ucmOncología
dc.subject.ucmEstadística
dc.subject.unesco3207.13 Oncología
dc.subject.unesco2404.01 Bioestadística
dc.titleIntegrative eQTL analysis of tumor and host omics data in individuals with bladder cancer
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number41
dspace.entity.typePublication
relation.isAuthorOfPublication9ff02bb9-3623-452e-ad72-8bb19687ec4e
relation.isAuthorOfPublication.latestForDiscovery9ff02bb9-3623-452e-ad72-8bb19687ec4e

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Integrative eQTL analysis of tumor and host omics data in individuals with bladder.pdf
Size:
422.41 KB
Format:
Adobe Portable Document Format

Collections