A nonlinear nonlocal wave-equation arising in combustion theory
dc.contributor.author | Herrero, Miguel A. | |
dc.contributor.author | Friedman, Avner | |
dc.date.accessioned | 2023-06-20T17:05:09Z | |
dc.date.available | 2023-06-20T17:05:09Z | |
dc.date.issued | 1990-01 | |
dc.description.abstract | The initial value problem for the equation (∂2 / ∂t2 − ∂2 / ∂x2) ∂T / ∂t = (γ ∂2 / ∂t − ∂2 / ∂x2) eT, γ>1, is considered. It is proved that under some restrictions on the initial data there is a curve, denoted by t=φγ(x), which is positive, Lipschitz continuous, and satisfies |φ′γ(x)|<1 for all x, such that the above initial value problem admits a unique classical solution for t<φ γ (x). Moreover, the solution blows up on the curve t=φ γ (x), that is, the second derivatives of T are unbounded in {x 0 <x<x 0 +δ, φ γ (x)−δ<t<φ γ (x)} for any x 0 and δ>0. The case of γ=1 is also studied. The solution for γ=1 blows up on t = φ¯¯ (x), and it is proved that under certain conditions the solutions for γ>1 converge to the one for γ=1 as γ→1 and lim inf γ→1 φ γ (x)≥φ¯¯(x). | |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | National Science Foundation | |
dc.description.sponsorship | CICYT | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/17295 | |
dc.identifier.doi | 10.1016/0362-546X(90)90017-B | |
dc.identifier.issn | 0362-546X | |
dc.identifier.officialurl | http://www.ima.umn.edu/preprints/Jan88Dec88/462.pdf | |
dc.identifier.relatedurl | http://www.ima.umn.edu | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/57745 | |
dc.issue.number | 2 | |
dc.journal.title | Nonlinear analysis-theory methods & applications | |
dc.language.iso | eng | |
dc.page.final | 106 | |
dc.page.initial | 93 | |
dc.publisher | Pergamon-Elsevier Science | |
dc.relation.projectID | DMD-86-12880 | |
dc.relation.projectID | PB86-0112-C02-02 | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 536.2 | |
dc.subject.cdu | 536.46 | |
dc.subject.cdu | 544.452 | |
dc.subject.keyword | Nonlocal wave equations | |
dc.subject.keyword | shock | |
dc.subject.keyword | blow-up of solutions | |
dc.subject.keyword | combustion | |
dc.subject.keyword | Cauchy problem | |
dc.subject.keyword | combustible gas | |
dc.subject.keyword | ignition | |
dc.subject.ucm | Ecuaciones diferenciales | |
dc.subject.unesco | 1202.07 Ecuaciones en Diferencias | |
dc.title | A nonlinear nonlocal wave-equation arising in combustion theory | |
dc.type | journal article | |
dc.volume.number | 14 | |
dcterms.references | P.A. BLYTHE AND D.G. CRIGHTON, Shock generated ignition: the induction zone, to appear. L.A. CAFFARELLI AND A. FRIEDMAN, The blow-up boundary for nonlinear wave equations, Trans. Amer. Math. Soc., 297 (1986), 223-241. L.A. CAFFARELLI AND A. FRIEDMAN, Differentiability of the blow-up curve for one dimensional nonlinear wave equations, Arch. Rat. Mech. Anal., 91 (1985), 83-98. J.F. CLARKE AND R.S. CANT, Nonsteady gasdynamic effects in the induction domain behind a strong shock wave, in Dynamic of Flames and Reactive Systems, J. R. Bower et al ed., Progress in Astronautics and Aeronautics, vol. 98 (1984), 142-163. A. FRIEMDAN AND L. OSWALD, The blow-up time for higher order semilinear parabolic equations with small leading coefficients, J. Diff. Eqs., to appear. R. GLASSEY, Finite time blow-up for solutions of nonlinear wave equations, Math. Zeit., 177(1981), 323-340. T.L. JACKSON AND A.K. KAPILA, Shock induced thermal runaway, SIAM J. Appl. Math., 45 (1985), 130-137. T. L. JACKSON AND A.K. KAPILA, Dynamics of hot-spot evolution in a reactive, compressible flow in Computational Fluid Dynamics and Reactive Gas Flows, B. Engquist et al ed., IMA volume 12, Springer Verlag, New York, 1988, pp. 123-151. T.L. JACKSON, A.K. KAPILA AND D.S. STEWART, Evolution of a reaction center in an explosive material, to appear. F. JOHN, Blow-up of solutions of nonlinear wave equations in three space dimensions, Manuscripta Math., 28 (1979), 235-268. D.R. KASSOY, A.K. KAPILA AND D.S. STEWART, A unified formulation for diffusive and nondiffusive thermal explosion theory, to appear. T. KATO, Blow-up of solutions of some nonlinear hyperbolic equations, Comm. Pure Appl. Math., 32 (1980), 501-501. A. LIÑÁN AND F.A. WILLIAMS, Theory of ignition of a reactive solid by a constant energy flux, Combustion Science and Technology, 3 (1971), 91-94. M.C. REED, Singularities in non-linear waves of Klein-Gordon type, in Nonlinear Partial Differential Equations and applications, Springer-Lecture Notes, no. 648, 1977. F.A. WILLIAMS, Combustion Theory, Addison-Wesley, 1985. | |
dspace.entity.type | Publication |
Download
Original bundle
1 - 1 of 1