Para depositar en Docta Complutense, identifícate con tu correo @ucm.es en el SSO institucional: Haz clic en el desplegable de INICIO DE SESIÓN situado en la parte superior derecha de la pantalla. Introduce tu correo electrónico y tu contraseña de la UCM y haz clic en el botón MI CUENTA UCM, no autenticación con contraseña.
 

A nonlinear nonlocal wave-equation arising in combustion theory

dc.contributor.authorHerrero, Miguel A.
dc.contributor.authorFriedman, Avner
dc.date.accessioned2023-06-20T17:05:09Z
dc.date.available2023-06-20T17:05:09Z
dc.date.issued1990-01
dc.description.abstractThe initial value problem for the equation (∂2 / ∂t2 − ∂2 / ∂x2) ∂T / ∂t = (γ ∂2 / ∂t − ∂2 / ∂x2) eT, γ>1, is considered. It is proved that under some restrictions on the initial data there is a curve, denoted by t=φγ(x), which is positive, Lipschitz continuous, and satisfies |φ′γ(x)|<1 for all x, such that the above initial value problem admits a unique classical solution for t<φ γ (x). Moreover, the solution blows up on the curve t=φ γ (x), that is, the second derivatives of T are unbounded in {x 0 <x<x 0 +δ, φ γ (x)−δ<t<φ γ (x)} for any x 0 and δ>0. The case of γ=1 is also studied. The solution for γ=1 blows up on t = φ¯¯ (x), and it is proved that under certain conditions the solutions for γ>1 converge to the one for γ=1 as γ→1 and lim inf γ→1 φ γ (x)≥φ¯¯(x).
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipNational Science Foundation
dc.description.sponsorshipCICYT
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/17295
dc.identifier.doi10.1016/0362-546X(90)90017-B
dc.identifier.issn0362-546X
dc.identifier.officialurlhttp://www.ima.umn.edu/preprints/Jan88Dec88/462.pdf
dc.identifier.relatedurlhttp://www.ima.umn.edu
dc.identifier.urihttps://hdl.handle.net/20.500.14352/57745
dc.issue.number2
dc.journal.titleNonlinear analysis-theory methods & applications
dc.language.isoeng
dc.page.final106
dc.page.initial93
dc.publisherPergamon-Elsevier Science
dc.relation.projectIDDMD-86-12880
dc.relation.projectIDPB86-0112-C02-02
dc.rights.accessRightsrestricted access
dc.subject.cdu536.2
dc.subject.cdu536.46
dc.subject.cdu544.452
dc.subject.keywordNonlocal wave equations
dc.subject.keywordshock
dc.subject.keywordblow-up of solutions
dc.subject.keywordcombustion
dc.subject.keywordCauchy problem
dc.subject.keywordcombustible gas
dc.subject.keywordignition
dc.subject.ucmEcuaciones diferenciales
dc.subject.unesco1202.07 Ecuaciones en Diferencias
dc.titleA nonlinear nonlocal wave-equation arising in combustion theory
dc.typejournal article
dc.volume.number14
dcterms.referencesP.A. BLYTHE AND D.G. CRIGHTON, Shock generated ignition: the induction zone, to appear. L.A. CAFFARELLI AND A. FRIEDMAN, The blow-up boundary for nonlinear wave equations, Trans. Amer. Math. Soc., 297 (1986), 223-241. L.A. CAFFARELLI AND A. FRIEDMAN, Differentiability of the blow-up curve for one dimensional nonlinear wave equations, Arch. Rat. Mech. Anal., 91 (1985), 83-98. J.F. CLARKE AND R.S. CANT, Nonsteady gasdynamic effects in the induction domain behind a strong shock wave, in Dynamic of Flames and Reactive Systems, J. R. Bower et al ed., Progress in Astronautics and Aeronautics, vol. 98 (1984), 142-163. A. FRIEMDAN AND L. OSWALD, The blow-up time for higher order semilinear parabolic equations with small leading coefficients, J. Diff. Eqs., to appear. R. GLASSEY, Finite time blow-up for solutions of nonlinear wave equations, Math. Zeit., 177(1981), 323-340. T.L. JACKSON AND A.K. KAPILA, Shock induced thermal runaway, SIAM J. Appl. Math., 45 (1985), 130-137. T. L. JACKSON AND A.K. KAPILA, Dynamics of hot-spot evolution in a reactive, compressible flow in Computational Fluid Dynamics and Reactive Gas Flows, B. Engquist et al ed., IMA volume 12, Springer Verlag, New York, 1988, pp. 123-151. T.L. JACKSON, A.K. KAPILA AND D.S. STEWART, Evolution of a reaction center in an explosive material, to appear. F. JOHN, Blow-up of solutions of nonlinear wave equations in three space dimensions, Manuscripta Math., 28 (1979), 235-268. D.R. KASSOY, A.K. KAPILA AND D.S. STEWART, A unified formulation for diffusive and nondiffusive thermal explosion theory, to appear. T. KATO, Blow-up of solutions of some nonlinear hyperbolic equations, Comm. Pure Appl. Math., 32 (1980), 501-501. A. LIÑÁN AND F.A. WILLIAMS, Theory of ignition of a reactive solid by a constant energy flux, Combustion Science and Technology, 3 (1971), 91-94. M.C. REED, Singularities in non-linear waves of Klein-Gordon type, in Nonlinear Partial Differential Equations and applications, Springer-Lecture Notes, no. 648, 1977. F.A. WILLIAMS, Combustion Theory, Addison-Wesley, 1985.
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Herrero50.pdf
Size:
379.1 KB
Format:
Adobe Portable Document Format

Collections