Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Spin-dependent terahertz oscillator based on hybrid graphene superlattices

dc.contributor.authorDíaz García, Elena
dc.contributor.authorMiralles, K.
dc.contributor.authorDomínguez-Adame Acosta, Francisco
dc.contributor.authorGaul, Christopher
dc.date.accessioned2023-06-19T13:32:36Z
dc.date.available2023-06-19T13:32:36Z
dc.date.issued2014-09-08
dc.description© 2014 AIP Publishing LLC. We thank E. Diez and Y. M. Meziani for helpful discussions. Work in Madrid was supported by MINECO (Project Nos. MAT2010-17180 and MAT2013-46308).
dc.description.abstractWe theoretically study the occurrence of Bloch oscillations in biased hybrid graphene systems with spin-dependent superlattices. The spin-dependent potential is realized by a set of ferromagnetic insulator strips deposited on top of a gapped graphene nanoribbon, which induce a proximity exchange splitting of the electronic states in the graphene monolayer. We numerically solve the Dirac equation and study Bloch oscillations in the lowest conduction band of the spin-dependent superlattice. While the Bloch frequency is the same for both spins, we find the Bloch amplitude to be spin dependent. This difference results in a spin-polarized ac electric current in the THz range.
dc.description.departmentDepto. de Física de Materiales
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMINECO
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/29544
dc.identifier.doi10.1063/1.4895673
dc.identifier.issn0003-6951
dc.identifier.officialurlhttp://scitation.aip.org/content/aip/journal/apl/105/10/10.1063/1.4895673
dc.identifier.relatedurlhttp://www.aip.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/33978
dc.issue.number10
dc.journal.titleApplied physics letters
dc.language.isoeng
dc.page.final103109/4
dc.page.initial103109/1
dc.publisherAmerican Institute of Physics
dc.relation.projectIDMAT2010-17180
dc.relation.projectIDMAT2013-46308
dc.rights.accessRightsopen access
dc.subject.cdu538.9
dc.subject.keywordGraphene superlattices
dc.subject.keywordTerahertz oscillators
dc.subject.ucmFísica de materiales
dc.titleSpin-dependent terahertz oscillator based on hybrid graphene superlattices
dc.typejournal article
dc.volume.number105
dcterms.references1 L. Esaki and R. Tsu, IBM J. Res. Dev. 14, 61 (1970). 2 F. Bloch, Z. Phys. 52, 555 (1929). 3 C. Zener, Proc. R. Soc. London, Ser. A 145, 523 (1934). 4 P. G. Savvidis, B. Kolasa, G. Lee, and S. J. Allen, Phys. Rev. Lett. 92, 196802 (2004). 5 T. Feil, H.-P. Tranitz, M. Reinwald, and W. Wegscheider, Appl. Phys. Lett. 87, 212112 (2005). 6 J. C. Meyer, C. O. Girit, M. F. Crommie, and A. Zettl, Appl. Phys. Lett. 92, 123110 (2008). 7 Z. Sun, C. L. Pint, D. C. Marcano, C. Zhang, J. Yao, G. Ruan, Z. Yan, Y. Zhu, R. H. Hauge, and J. M. Tour, Nat. Commun. 2, 559 (2011). 8 B. S. Archanjo, B. Fragneaud, L. Gustavo Canc¸ado, D. Winston, F. Miao, C. Alberto Achete, and G. Medeiros-Ribeiro, Appl. Phys. Lett. 104, 193114 (2014). 9 G. M. Maksimova, E. S. Azarova, A. V. Telezhnikov, and V. A. Burdov, Phys. Rev. B 86, 205422 (2012). 10 S. Dubey, V. Singh, A. K. Bhat, P. Parikh, S. Grover, R. Sensarma, V. Tripathi, K. Sengupta, and M. M. Deshmukh, Nano Lett. 13, 3990 (2013). 11 L. A. Ponomarenko, R. V. Gorbachev, G. L. Yu, D. C. Elias, R. Jalil, A. A. Patel, A. Mishchenko, A. S. Mayorov, C. R. Woods, J. R. Wallbank, M. Mucha-Kruczynski, B. A. Piot, M. Potemski, I. V. Grigorieva, K. S. Novoselov, F. Guinea, V. I. Fal’ko, and A. K. Geim, Nature 497, 594 (2013). 12 F. Sattari and E. Faizabadi, Eur. Phys. J. B 86, 278 (2013). 13 D. Dragoman and M. Dragoman, Appl. Phys. Lett. 93, 103105 (2008). 14 G. J. Ferreira, M. N. Leuenberger, D. Loss, and J. C. Egues, Phys. Rev. B 84, 125453 (2011). 15 V. Krueckl and K. Richter, Phys. Rev. B 85, 115433 (2012). 16 L. Jiang and Y. Zheng, J. Appl. Phys. 109, 053701 (2011). 17 Q. H. Huo, R. Z. Wang, and H. Yan, Appl. Phys. Lett. 101, 152404 (2012). 18 W.-T. Lu, W. Li, Y.-L. Wang, C.-Z. Ye, and H. Jiang, J. Appl. Phys. 112, 083712 (2012). 19 X.-X. Yu, Y.-E. Xie, Y. T. Ou, and Y.-P. Chen, Chin. Phys. B 21, 107202 (2012). 20 E. Faizabadi, M. Esmaeilzadeh, and F. Sattari, Eur. Phys. J. B 85, 198 (2012). 21 J. Mun_arriz, C. Gaul, A. V. Malyshev, P. A. Orellana, C. A. Müller, and F. Dom_ınguez-Adame, Phys. Rev. B 88, 155423 (2013). 22 H. Haugen, D. Huertas-Hernando, and A. Brataas, Phys. Rev. B 77, 115406 (2008). 23 M. Y. Han, B. Özyilmaz, Y. Zhang, and P. Kim, Phys. Rev. Lett. 98, 206805 (2007). 24 Y.-W. Son, M. L. Cohen, and S. G. Louie, Phys. Rev. Lett. 97, 216803 (2006). 25 J. Mun_arriz, F. Dom_ınguez-Adame, and A. V. Malyshev, Nanotechnology 22, 365201 (2011). 26 A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009). 27 L. Brey and H. A. Fertig, Phys. Rev. B 73, 235411 (2006). 28 K. Wakabayashi, Y. Takane, M. Yamamoto, and M. Sigrist, New J. Phys. 11, 095016 (2009). 29 E. Beaurepaire, G. M. Turner, S. M. Harrel, M. C. Beard, J.-Y. Bigot, and C. A. Schmuttenmaer, Appl. Phys. Lett. 84, 3465 (2004).
dspace.entity.typePublication
relation.isAuthorOfPublicationd03da7bf-8066-4f33-93e2-ac077fd4fcb8
relation.isAuthorOfPublicationdbc02e39-958d-4885-acfb-131220e221ba
relation.isAuthorOfPublication3df963ba-ec00-405d-9b2a-9200d1b4148b
relation.isAuthorOfPublication.latestForDiscoveryd03da7bf-8066-4f33-93e2-ac077fd4fcb8

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1804.pdf
Size:
1.07 MB
Format:
Adobe Portable Document Format

Collections