Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Membrane Lipid-KIR2.x Channel Interactions Enable Hemodynamic Sensing in Cerebral Arteries

dc.contributor.authorSancho González, María
dc.contributor.authorFabris, Sergio
dc.contributor.authorHald, Bjorn O.
dc.contributor.authorBrett, Suzanne E.
dc.contributor.authorSandow, Shaun L.
dc.contributor.authorPoepping, Tamie L.
dc.contributor.authorWelsh, Donald G.
dc.date.accessioned2024-10-29T13:53:00Z
dc.date.available2024-10-29T13:53:00Z
dc.date.issued2019-06
dc.description.abstractObjective- Inward rectifying K+ (KIR) channels are present in cerebral arterial smooth muscle and endothelial cells, a tandem arrangement suggestive of a dynamic yet undiscovered role for this channel. This study defined whether distinct pools of cerebral arterial KIR channels were uniquely modulated by membrane lipids and hemodynamic stimuli. Approach and Results- A Ba2+-sensitive KIR current was isolated in smooth muscle and endothelial cells of rat cerebral arteries; molecular analyses subsequently confirmed KIR2.1/KIR2.2 mRNA and protein expression in both cells. Patch-clamp electrophysiology next demonstrated that each population of KIR channels was sensitive to key membrane lipids and hemodynamic stimuli. In this regard, endothelial KIR was sensitive to phosphatidylinositol 4,5-bisphosphate content, with depletion impairing the ability of laminar shear stress to activate this channel pool. In contrast, smooth muscle KIR was sensitive to membrane cholesterol content, with sequestration blocking the ability of pressure to inhibit channel activity. The idea that membrane lipids help confer shear stress and pressure sensitivity of KIR channels was confirmed in intact arteries using myography. Virtual models integrating structural/electrical observations reconceptualized KIR as a dynamic regulator of membrane potential working in concert with other currents to set basal tone across a range of shear stresses and intravascular pressures. Conclusions- The data show for the first time that specific membrane lipid-KIR interactions enable unique channel populations to sense hemodynamic stimuli and drive vasomotor responses to set basal perfusion in the cerebral circulation.
dc.description.departmentDepto. de Fisiología
dc.description.facultyFac. de Medicina
dc.description.refereedTRUE
dc.description.statuspub
dc.identifier.citationSancho M, Fabris S, Hald BO, Brett SE, Sandow SL, Poepping TL, Welsh DG. Membrane Lipid-KIR2.x Channel Interactions Enable Hemodynamic Sensing in Cerebral Arteries. Arterioscler Thromb Vasc Biol. 2019. 39(6):1072-1087. doi: 10.1161/ATVBAHA.119.312493.
dc.identifier.doi10.1161/ATVBAHA.119.312493
dc.identifier.issn1079-5642
dc.identifier.officialurlhttps://doi.org/10.1161/ATVBAHA.119.312493
dc.identifier.relatedurlhttps://www.ahajournals.org/doi/epub/10.1161/ATVBAHA.119.312493
dc.identifier.urihttps://hdl.handle.net/20.500.14352/109711
dc.issue.number6
dc.journal.titleArteriosclerosis, Thrombosis and Vascular Biology
dc.language.isoeng
dc.page.final1087
dc.page.initial1072
dc.publisherAmerican Heart Association
dc.rights.accessRightsrestricted access
dc.subject.cdu612
dc.subject.keywordcholesterol
dc.subject.keywordendothelial cells
dc.subject.keywordhemodynamics
dc.subject.keywordion channels
dc.subject.keywordmembrane lipids
dc.subject.keywordperfusion
dc.subject.keywordsmooth muscle
dc.subject.ucmCiencias Biomédicas
dc.subject.unesco24 Ciencias de la Vida
dc.titleMembrane Lipid-KIR2.x Channel Interactions Enable Hemodynamic Sensing in Cerebral Arteries
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number39
dspace.entity.typePublication
relation.isAuthorOfPublication05e2c82b-2a26-438c-893d-84ac291d9fb5
relation.isAuthorOfPublication.latestForDiscovery05e2c82b-2a26-438c-893d-84ac291d9fb5

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
sancho-et-al-2019-membrane-lipid-kir2-x-channel-interactions-enable-hemodynamic-sensing-in-cerebral-arteries.pdf
Size:
3.6 MB
Format:
Adobe Portable Document Format

Collections