Bulk viscosity and the phase transition of the linear sigma model

Thumbnail Image
Full text at PDC
Publication Date
Torres Rincón, Juan M.
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
American Physical Society
Google Scholar
Research Projects
Organizational Units
Journal Issue
In this work, we deal with the critical behavior of the bulk viscosity in the linear sigma model (LσM) as an example of a system which can be treated by using different techniques. Starting from the Boltzmann-Uehling-Uhlenbeck equation, we compute the bulk viscosity over entropy density of the LσM in the large-N limit. We search for a possible maximum of ξ/s at the critical temperature of the chiral phase transition. The information about this critical temperature, as well as the effective masses, is obtained from the effective potential. We find that the expected maximum ( as a measure of the conformality loss) is absent in the large-N limit in agreement with other models in the same limit. However, this maximum appears when, instead of the large-N limit, the Hartree approximation within the Cornwall-Jackiw-Tomboulis formalism is used. Nevertheless, this last approach to the L sigma M does not give rise to the Goldstone theorem and also predicts a first-order phase transition instead of the expected second-order one. Therefore, both the large-N limit and the Hartree approximations, should be considered relevant and informative for the study of the critical behavior of the bulk viscosity in the LσM.
©2012 American Physical Society. We thank Felipe J. Llanes-Estrada, and Anna W. Bielska for reading the manuscript and for useful suggestions. We also thank the referee for helping us to improve the whole content of this manuscript. This work was supported by Grants No. Consolider-CSD2007-00042, No. FPA2011-27853-C02-01. and No. UCM-BSCH GR58/08 910309. Juan M. Torres-Rincon is a recipient of a FPU Grant from the Spanish Ministry of Education.
Unesco subjects
[1] A. Adare et al. (PHENIX Collaboration), Phys. Rev. Lett. 98, 162301 (2007). [2] K. Aamodt et al. (ALICE Collaboration), Phys. Rev. Lett. 105, 252302 (2010). [3] M. Luzum and P. Romatschke, Phys. Rev. C 78, 034915 (2008); 79, 039903(E) (2009). [4] H. Song and U.W. Heinz, J. Phys. G 36, 064033 (2009). [5] P. Bozek, J. Phys. G 38, 124043 (2011). [6] P. K. Kovtun, D. T. Son, and A. O. Starinets, Phys. Rev. Lett. 94, 111601 (2005). [7] L. P. Csernai, J. I. Kapusta, and L. D. McLerran, Phys. Rev. Lett. 97, 152303 (2006). [8] A. Dobado, F. J. Llanes-Estrada, and J. M. Torres-Rincón, Phys. Rev. D 79, 014002 (2009). [9] A. Dobado, F. J. Llanes-Estrada, and J. M. Torres-Rincón, Phys. Rev. D 80, 114015 (2009). [10] A. Dobado, F. J. Llanes-Estrada, and J. M. T. Rincón, AIP Conf. Proc. 1031, 221 (2008). [11] S. Weinberg, Astrophys. J. 168, 175 (1971). [12] V. Canuto and S. H. Hsieh, Nuovo Cimento Soc. Ital. Fis. 48B, 189 (1978). [13] P. B. Arnold, C. Dogan, and G. D. Moore, Phys. Rev. D 74, 085021 (2006). [14] D. Fernández-Fraile and A. G. Nicola, Phys. Rev. Lett. 102, 121601 (2009). [15] A. Dobado, F. J. Llanes-Estrada, and J. M. Torres- Rincón, Phys. Lett. B 702, 43 (2011). [16] J. M. Torres-Rincón, Prog. Part. Nucl. Phys. 67, 461 (2012). [17] A. Onuki Phys. Rev. E 55, 403 (1997). [18] H. B. Meyer, Phys. Rev. Lett. 100, 162001 (2008). [19] F. Karsch, D. Kharzeev, and K. Tuchin, Phys. Lett. B 663, 217 (2008). [20] K. Paech and S. Pratt, Phys. Rev. C 74, 014901 (2006). [21] D. Kharzeev and K. Tuchin, J. High Energy Phys. 09 (2008) 093. [22] B.-C. Li and M. Huang, Phys. Rev. D 80, 034023 (2009). [23] P. Chakraborty and J. I. Kapusta, Phys. Rev. C 83, 014906 (2011). [24] D. Fernández-Fraile, Phys. Rev. D 83, 065001 (2011). [25] E. Nakano, V. Skokov, and B. Friman, Phys. Rev. D 85, 096007 (2012). [26] K. Dusling and T. Schafer, Phys. Rev. C 85, 044909 (2012). [27] With respect to the Lagrangian in Ref. [9], we explicitly show the N dependence of the coupling constant. The Lagrangian shown there was in Minkowski space. [28] E. J. Weinberg and A.-q. Wu, Phys. Rev. D 36, 2474 (1987). [29] J. Iliopoulos, C. Itzykson, and A. Martín, Rev. Mod. Phys. 47, 165 (1975). [30] M. T. M. van Kessel, arXiv:0810.1412. [31] J. Alexandre, V. Branchina, and J. Polonyi, Phys. Lett. B 445, 351 (1999). [32] A. Dobado and J. Morales, Phys. Rev. D 52, 2878 (1995). [33] G. Aarts and J. M. M. Resco, J. High Energy Phys. 02 (2004) 061. [34] S. Jeon, Phys. Rev. D 52, 3591 (1995). [35] E. M. Lifshitz and L. P. Pitaevskii, Physical Kinetics (Landau and Lifshitz Course of Theoretical Physics) (Pergamon, Oxford, 1981), Vol. 10. [36] However, the component of AðpÞ parallel to x is not fixed by the BUU equation. If needed, it can be fixed by the Landau-Lifschitz condition. [37] The conformal value of the squared speed of sound depends on the space-time dimensions D and reads [38] If the speed of sound is a monotonically increasing function with temperature, as the relativistic limit is v2S¼ 1,this value can only be reached at T !1. [39] G. S. Denicol, T. Kodama, T. Koide, and P. Mota, Phys. Rev. C 80, 064901 (2009). [40] A. Bazavov, T. Bhattacharya, M. Cheng, N. H. Christ, C. DeTar, S. Ejiri, S. Gottlieb, R. Gupta et al., Phys. Rev. D 80, 014504 (2009). [41] S. Borsanyi, G. Endrodi, Z. Fodor, A. Jakovac, S. D. Katz, S. Krieg, C. Ratti, and K. K. Szabo, J. High Energy Phys. 11 (2010) 077. [42] M. Laine and Y. Schroder, Phys. Rev. D 73, 085009 (2006). [43] P. Gerber and H. Leutwyler, Nucl. Phys. B321, 387 (1989). [44] N. Petropoulos, arXiv:0402136. [45] In the Hartree approximation, the _ is not N-suppressed anymore, and it should be included in the thermodynamical functions. However, given the similar results in Ref. [23], we will assume that the pertinent changes are minimal, and we do not include this degree of freedom in order to maintain the simplicity in the kinetic theory formalism. [46] A. Muronga, Phys. Rev. C 76, 014910 (2007). [47] J. M. Torres-Rincon, Ph.D. thesis, Universidad Complutense de Madrid, Spain, 2012, arXiv:1205.0782. [48] J. M. Cornwall, R. Jackiw, and E. Tomboulis, Phys. Rev. D 10, 2428 (1974). [49] G. Amelino-Camelia and S.-Y. Pi, Phys. Rev. D 47, 2356 (1993). [50] G. Amelino-Camelia, Phys. Lett. B 407, 268 (1997). [51] J. T. Lenaghan and D. H. Rischke, J. Phys. G 26, 431 (2000). [52] J. Berges, S. Borsanyi, U. Reinosa, and J. Serreau, Ann. Phys. (Berlin) 320, 344 (2005). [53] G. Fejos, A. Patkos, and Z. Szep, Nucl. Phys. A803, 115 (2008). [54] We thank the referee for bringing these references to our attention.