Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Let the Substrate Flow, Not the Enzyme: Practical Immobilization of D-Amino Acid Oxidase in a Glass Microreactor for Effective Biocatalytic Conversions

dc.contributor.authorBolívar Bolívar, Juan Manuel
dc.contributor.authorTribulato, Marco
dc.contributor.authorPetrasek, Zdenek
dc.contributor.authorNidetzky, Bernd
dc.date.accessioned2024-01-09T10:20:49Z
dc.date.available2024-01-09T10:20:49Z
dc.date.issued2016
dc.description.abstractExploiting enzymes for chemical synthesis in flow microreactors necessitates their reuse for multiple rounds of conversion. To achieve this goal, immobilizing the enzymes on microchannel walls is a promising approach, but practical methods for it are lacking. Using fusion to a silica-binding module to engineer enzyme adsorption to glass surfaces, we show convenient immobilization of D-amino acid oxidase on borosilicate microchannel plates. In confocal laser scanning microscopy, channel walls appeared uniformly coated with target protein. The immobilized enzyme activity was in the range expected for monolayer coverage of the plain surface with oxidase (2.37 105 nmol/mm2 ). Surface attachment of the enzyme was completely stable under flow. The operational half-life of the immobilized oxidase (25 C, pH 8.0; soluble catalase added) was 40 h. Enzymatic oxidation of D-Met into a-keto-g-(methylthio)butyric acid was characterized in single-pass and recycle reactor configurations, employing in-line measurement of dissolved O2, and off-line determination of the keto-acid product. Reaction-diffusion time-scale analysis for different flow conditions showed that the heterogeneously catalyzed reaction was always slower than diffusion of O2 to the solid surface (DaII 0.3). Potential of the microreactor for intensifying O2-dependent biotransformations restricted by mass transfer in conventional reactors is thus revealed
dc.description.departmentDepto. de Ingeniería Química y de Materiales
dc.description.facultyFac. de Ciencias Químicas
dc.description.refereedTRUE
dc.description.statuspub
dc.identifier.citationBolivar, J. M., Tribulato, M. A., Petrasek, Z., & Nidetzky, B. (2016). Let the substrate flow, not the enzyme: Practical immobilization of d-amino acid oxidase in a glass microreactor for effective biocatalytic conversions. Biotechnology and Bioengineering, 113(11), 2342-2349. https://doi.org/10.1002/BIT.26011
dc.identifier.doi10.1002/bit.26011
dc.identifier.essn1097-0290
dc.identifier.issn0006-3592
dc.identifier.officialurlhttps://doi.org/10.1002/bit.26011
dc.identifier.urihttps://hdl.handle.net/20.500.14352/91973
dc.issue.number11
dc.language.isoeng
dc.page.final2349
dc.page.initial2342
dc.publisherWiley
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.cdu66.0
dc.subject.keywordEnzymatic oxidation
dc.subject.keywordFlow microreactor
dc.subject.keywordGlass
dc.subject.keywordImmobilization
dc.subject.keywordMicrofluidics
dc.subject.keywordSilica-binding module
dc.subject.ucmQuímica industrial
dc.subject.ucmIngeniería química
dc.subject.ucmQuímica física (Química)
dc.subject.unesco3302 Tecnología Bioquímica
dc.subject.unesco3303 Ingeniería y Tecnología Químicas
dc.titleLet the Substrate Flow, Not the Enzyme: Practical Immobilization of D-Amino Acid Oxidase in a Glass Microreactor for Effective Biocatalytic Conversions
dc.typejournal article
dc.type.hasVersionAM
dc.volume.number113
dspace.entity.typePublication
relation.isAuthorOfPublicationdd41e7a5-3013-4b28-8263-915921ecf30a
relation.isAuthorOfPublication.latestForDiscoverydd41e7a5-3013-4b28-8263-915921ecf30a

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Let_the_Substrate_Flow.pdf
Size:
1.41 MB
Format:
Adobe Portable Document Format

Collections