Aviso: Por labores de mantenimiento y mejora del repositorio, el martes día 1 de Julio, Docta Complutense no estará operativo entre las 9 y las 14 horas. Disculpen las molestias.
 

Monochromatic aberrations in resonant optical elements applied to a focusing multilevel reflectarray

dc.contributor.authorGinn, James
dc.contributor.authorAlda, Javier
dc.contributor.authorGómez Pedrero, José Antonio
dc.contributor.authorBoreman, Glenn
dc.date.accessioned2023-06-20T04:09:44Z
dc.date.available2023-06-20T04:09:44Z
dc.date.issued2010-05
dc.description© 2010 Optical Society of America. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modifications of the content of this paper are prohibited.
dc.description.abstractThe monochromatic aberrations produced by the phase distribution reflected by resonant sub-wavelength metallic structures are studied both analytically and numerically. Even for normal incidence, the angular dependence of the re-radiated wavefront disturbs the overall performance of the reflectarray. This effect is modelled as combination of a linear and a cubic dependence. A complete numerical simulation of a multilevel focusing reflectarray is performed using computational-electromagnetic and physical-optics-propagation methods. A modified Strehl ratio is defined to show the dependence of the focused spot behavior on aperture. The irradiance distribution is dependent on the polarization state. A small-aperture focusing reflectarray has been designed, fabricated, and tested. The irradiance distribution at the focusing plane is compared with the simulated one, showing a good agreement when residual wavefront aberrations are included.
dc.description.departmentSección Deptal. de Óptica (Óptica)
dc.description.facultyFac. de Óptica y Optometría
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Innovacion
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/36467
dc.identifier.doi10.1364/OE.18.010931
dc.identifier.issn1094-4087
dc.identifier.officialurlhttp://www.opticsexpress.org/abstract.cfm?URI=oe-18-11-10931
dc.identifier.urihttps://hdl.handle.net/20.500.14352/44988
dc.issue.number11
dc.journal.titleOptics Express
dc.language.isoeng
dc.page.final10940
dc.page.initial10931
dc.publisherOSA
dc.relation.projectIDTEC2006-01882
dc.relation.projectIDENE2009-14340-C02-01
dc.rights.accessRightsopen access
dc.subject.cdu535
dc.subject.keywordmaterials
dc.subject.keywordmetamaterials
dc.subject.keyworddiffraction and gratings
dc.subject.keywordphase shift
dc.subject.keywordimaging systems
dc.subject.keywordinfrared imaging
dc.subject.ucmElectromagnetismo
dc.subject.ucmÓptica (Física)
dc.subject.unesco2202 Electromagnetismo
dc.subject.unesco2209.19 Óptica Física
dc.titleMonochromatic aberrations in resonant optical elements applied to a focusing multilevel reflectarray
dc.typejournal article
dc.volume.number18
dcterms.references1. B. Munk, “Finite Antenna Arrays and FSS,” Wiley (2006). 2. J. S. Tharp, J. M. Lopez-Alonso, J. C. Ginn, C. F. Middleton, B. A. Lail, B. A. Munk, and G. D. Boreman, “Demonstration of a single-layer meanderline phase retarder at infrared,” Opt. Lett. 31(18), 2687–2689 (2006). 3. D. Berry, R. Malech, and W. Kennedy, “The reflectarray antenna,” IEEE Trans. Antenn. Propag. 11(6), 645–651 (1963). 4. J. Montgomery, “Scattering by an infinite periodic array of microstrip elements,” IEEE Trans. Antenn. Propag. 26(6), 850–854 (1978). 5. D. Pozar, and T. Metzler, “Analysis of a reflectarray antenna using microstrip patches of variable size,” Electron. Lett. 29(8), 657–658 (1993). 6. F. González, J. Alda, J. Simón, J. Ginn, and G. Boreman, “The effect of metal dispersion on the resonance of antennas at infrared frequencies,” Infrared Phys. Technol. 52(1), 48–51 (2009). 7. J. Ginn, B. Lail, and G. Boreman, “Phase characterization of reflectarray elements at infrared,” IEEE Trans. Antenn. Propag. 55(11), 2989–2993 (2007). 8. J. Ginn, B. Lail, J. Alda, and G. Boreman, “Planar infrared binary phase reflectarray,” Opt. Lett. 33(8), 779–781 (2008). 9. F. Shen, and A. Wang, “Fast-Fourier-transform based numerical integration method for the Rayleigh-Sommerfeld diffraction formula,” Appl. Opt. 45(6), 1102–1110 (2006). 10. M. Young, “Zone plates and their aberrations,” J. Opt. Soc. Am. 62(8), 972–976 (1972). 11. H. Hristov, “Fresnel zones in wireless links, zone plates lenses and antennas,” Artech (2000). 12. M. Y. Kiang, “Neural networks,” in Encyclopedia of Information Systems, Academic Press (2002), 303–315. 13. J. H. McLeod, “Axicons and their uses,” J. Opt. Soc. Am. 50(2), 166–166 (1960). 14. J. S. Tharp, J. Alda, and G. D. Boreman, “Off-axis behavior of an infrared meander-line waveplate,” Opt. Lett. 32(19), 2852–2854 (2007). 15. V. Mahajan, “Aberration theory made simple,” SPIE Press (1991). 16. Y. Li, and E. Wolf, “Focal shift in diffracted converging spherical waves,” Opt. Commun. 39(4), 211–215 (1981).
dspace.entity.typePublication
relation.isAuthorOfPublication5c5cb6be-771c-40ed-8af0-cdfdbdfb3d36
relation.isAuthorOfPublication.latestForDiscovery5c5cb6be-771c-40ed-8af0-cdfdbdfb3d36

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
oe-18-11-10931.pdf
Size:
1.2 MB
Format:
Adobe Portable Document Format

Collections