Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Spatial correlations in nonequilibrium reaction-diffusion problems by the Gillespie algorithm

dc.contributor.authorLuis Hita, Jorge
dc.contributor.authorOrtiz De Zárate Leira, José María
dc.date.accessioned2023-06-19T13:26:19Z
dc.date.available2023-06-19T13:26:19Z
dc.date.issued2013-05-14
dc.description© 2013 American Physical Society. We are indebted to Jan V. Sengers for suggesting part of this research and carefully reviewing the manuscript.
dc.description.abstractWe present a study of the spatial correlation functions of a one-dimensional reaction-diffusion system in both equilibrium and out of equilibrium. For the numerical simulations we have employed the Gillespie algorithm dividing the system into cells to treat diffusion as a chemical process between adjacent cells. We find that the spatial correlations are spatially short ranged in equilibrium but become long ranged in nonequilibrium. These results are in good agreement with theoretical predictions from fluctuating hydrodynamics for a one-dimensional system and periodic boundary conditions.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/27274
dc.identifier.doi10.1103/PhysRevE.87.052802
dc.identifier.issn1539-3755
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevE.87.052802
dc.identifier.relatedurlhttp://journals.aps.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/33692
dc.issue.number5
dc.journal.titlePhysical Review E
dc.language.isoeng
dc.publisherAmerican Physical Society
dc.rights.accessRightsopen access
dc.subject.cdu536
dc.subject.keywordLong-range correlations
dc.subject.keywordAccelerated stochastic simulation
dc.subject.keywordChemical langevin equation
dc.subject.keywordMicroscopic simulation
dc.subject.keywordHydrodynamic fluctuations
dc.subject.keywordHomogeneous systems
dc.subject.keywordLight-scattering
dc.subject.keywordLiquid-mixtures
dc.subject.keywordEquilibrium
dc.subject.keywordNoise
dc.subject.ucmTermodinámica
dc.subject.unesco2213 Termodinámica
dc.titleSpatial correlations in nonequilibrium reaction-diffusion problems by the Gillespie algorithm
dc.typejournal article
dc.volume.number87
dcterms.references[1] J. R. Dorfman, T. R. Kirkpatrick, and J. V. Sengers, Annu. Rev. Phys. Chem. 45, 213 (1994). [2] L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Pergamon, London, 1959); 2nd revised English version, 1987. [3] J. M. Ortiz de Zárate and J. V. Sengers, Hydrodynamic Fluctuations in Fluids and Fluid Mixtures (Elsevier, Amsterdam, 2006). [4] T. R. Kirkpatrick, E. G. D. Cohen, and J. R. Dorfman, Phys. Rev. A 26, 995 (1982). [5] D. Ronis and I. Procaccia, Phys. Rev. A 26, 1812 (1982). [6] J.M. Ortiz de Zárate and J.V. Sengers, PhysicaA300, 25 (2001). [7] B. M. Law and J. C. Nieuwoudt, Phys. Rev. A 40, 3880 (1989). [8] P. N. Segrè and J. V. Sengers, Physica A 198, 46 (1993). [9] I. Bena, M. M. Mansour, and F. Baras, Phys. Rev. E 59, 5503 (1999). [10] J. F. Lutsko and J. W. Dufty, Phys. Rev. E 66, 041206 (2002). [11] H. Wada and S. I. Sasa, Phys. Rev. E 67, 065302(R) (2003). [12] J. M. Ortiz de Zárate and J. V. Sengers, J. Stat. Phys. 144, 774 (2011). [13] B. M. Law, R. W. Gammon, and J. V. Sengers, Phys. Rev. Lett. 60, 1554 (1988). [14] A. Vailati and M. Giglio, Phys. Rev. Lett. 77, 1484 (1996). [15] C. J. Takacs, A. Vailati, R. Cerbino, S. Mazzoni, M. Giglio, and D. S. Cannell, Phys. Rev. Lett. 106, 244502 (2011). [16] J. M. Ortiz de Zárate, J.V. Sengers, D. Bedeaux, and S. Kjelstrup, J. Chem. Phys. 127, 034501 (2007). [17] D. Bedeaux, I. Pagonabarraga, J. M. Ortiz de Zárate, J. V. Sengers, and S. Kjelstrup, Phys. Chem. Chem. Phys. 12, 12780 (2010). [18] G. Nicolis and M. Malek Mansour, Phys. Rev.A29, 2845 (1984). [19] J. Zhang and J. Fan, Phys. Rev. E 79, 056302 (2009). [20] J. Gorecki, K. Kitahara, K. Yoshikawa, and I. Hanazaki, Physica A 211, 327 (1994). [21] J. Wakou, K. Kitahara, M. Litniewski, and J. Gorecki, Physica A 328, 23 (2003). [22] D. T. Gillespie, J. Comput. Phys. 22, 403 (1976). [23] D. T. Gillespie, J. Phys. Chem. 81, 2340 (1977). [24] H. H. McAdams and A. Arkin, PNAS 94, 814 (1997). [25] M. Thattai and A. van Oudenaarden, PNAS 98, 8614 (2001). [26] N. Barkai and S. Leibler, Nature (London) 403, 267 (2000). [27] J. A. White, J. T. Rubinstein, and A. R. Kay, Trends Neurosci. 23, 131 (2000). [28] D. Bernstein, Phys. Rev. E 71, 041103 (2005). [29] D. T. Gillespie, J. Chem. Phys. 115, 1716 (2001). [30] D. T. Gillespie and L. R. Petzold, J. Chem. Phys. 119, 8229 (2003). [31] S. Indurkhya and J. Beal, PLoS ONE 5, e8125 (2010). [32] J. Wakou and K. Kitahara, Physica A 281, 318 (2000). [33] G. Nicolis, A. Amellal, G. Dupont, and M. Mareschal, J. Mol. Liq. 41, 5 (1989). [34] F. Baras, J. E. Pearson, and M. Malek Mansour, J. Chem. Phys. 93, 5747 (1990). [35] M. Mareschal and A. De Wit, J. Chem. Phys. 96, 2000 (1992). [36] F. van Wijland, K. Oerding, and H. J. Hilhorst, Physica A 251, 179 (1998). [37] R. Taylor and R. Krishna, Multicomponent Mass Transfer (Wiley, New York, 1993). [38] D. T. Gillespie, J. Chem. Phys. 113, 297 (2000). [39] R. Zwanzig, J. Phys. Chem. B 105, 6472 (2001). [40] C. W. Gardiner, Handbook of Stochastic Methods, 2nd ed. (Springer, Berlin, 1985). [41] N. G. van Kampen, Phys. Lett. A 59, 333 (1976). [42] N. G. van Kampen, Stochastic Processes in Physics and Chemistry (North-Holland, Amsterdam, 1982). [43] F. Baras, M. Malek Mansour, and J. E. Pearson, J. Chem. Phys. 105, 8257 (1996). [44] R. Schmitz and E. G. D. Cohen, J. Stat. Phys. 39, 285 (1985). [45] I. S. Gradstein and I. M. Ryzhik, Table of Integrals, Series, and Products, 5th ed. (Academic Press, San Diego, 1994) [46] L. F. Lafuerza and R. Toral, J. Stat. Phys. 140, 917 (2010). [47] D. T. Gillespie, A. Hellander, and L. R. Petzold, J. Chem. Phys. 138, 170901 (2013).
dspace.entity.typePublication
relation.isAuthorOfPublicationd2b809b1-3ba2-407e-add2-8b8251e306ba
relation.isAuthorOfPublication.latestForDiscoveryd2b809b1-3ba2-407e-add2-8b8251e306ba

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Ortiz05libre.pdf
Size:
347.4 KB
Format:
Adobe Portable Document Format

Collections