Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Janus II: A new generation application-driven computer for spin-system simulations

dc.contributor.authorBaity Jesi, Marco
dc.contributor.authorFernández Pérez, Luis Antonio
dc.contributor.authorMartín Mayor, Víctor
dc.contributor.authorMuñoz Sudupe, Antonio
dc.date.accessioned2023-06-19T15:01:42Z
dc.date.available2023-06-19T15:01:42Z
dc.date.issued2014-02
dc.description© 2013 Elsevier B.V. Artículo firmado por 24 autores. We warmly acknowledge the excellent work done by the Janus II team at Link Engineering. In particular we thank Pietro Lazzeri, Pamela Pedrini, Roberto Preatoni, Luigi Trombetta and Alessandro Zambardi for their professional and enthusiastic work. The Janus II project was supported by the European Regional Development Fund (ERDF/2007-2013, FEDER project UNZA08-4E-020); by the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013, ERC grant agreement no. 247328); by the MICINN (Spain) (contracts FIS2012-35719-C02, FIS2010-16587); by Junta de Extremadura (contract GR101583); by the Italian Ministry of Education and Research (PRIN Grant 2010HXAW77 007).
dc.description.abstractThis paper describes the architecture, the development and the implementation of Janus II, a new generation application-driven number cruncher optimized for Monte Carlo simulations of spin systems (mainly spin glasses). This domain of computational physics is a recognized grand challenge of high-performance computing: the resources necessary to study in detail theoretical models that can make contact with experimental data are by far beyond those available using commodity computer systems. On the other hand, several specific features of the associated algorithms suggest that unconventional computer architectures – that can be implemented with available electronics technologies – may lead to order of magnitude increases in performance, reducing to acceptable values on human scales the time needed to carry out simulation campaigns that would take centuries on commercially available machines. Janus II is one such machine, recently developed and commissioned, that builds upon and improves on the successful JANUS machine, which has been used for physics since 2008 and is still in operation today. This paper describes in detail the motivations behind the project, the computational requirements, the architecture and the implementation of this new machine and compares its expected performances with those of currently available commercial systems.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipUnión Europea. FP7
dc.description.sponsorshipMinisterio de Ciencia e Innovación (MICINN)
dc.description.sponsorshipEuropean Regional Development Fund
dc.description.sponsorshipJunta de Extremadura (Spain)
dc.description.sponsorshipItalian Ministry of Education and Research
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/37243
dc.identifier.doi10.1016/j.cpc.2013.10.019
dc.identifier.issn0010-4655
dc.identifier.officialurlhttp://doi.org/10.1016/j.cpc.2013.10.019
dc.identifier.relatedurlhttp://www.sciencedirect.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/35157
dc.issue.number2
dc.journal.titleComputer physics communications
dc.language.isoeng
dc.page.final559
dc.page.initial550
dc.publisherElsevier Science Ltd
dc.relation.projectIDCriPheRaSy (247328)
dc.relation.projectIDFIS2012-35719-C02
dc.relation.projectIDFIS2010-16587
dc.relation.projectIDFEDER project UNZA08-4E-020
dc.relation.projectIDGR101583
dc.relation.projectID2010HXAW77 007
dc.rights.accessRightsopen access
dc.subject.cdu53
dc.subject.keywordSpecial-purpose computer
dc.subject.keywordMonte-Carlo simulations
dc.subject.keywordGlass models
dc.subject.keywordIsing-model
dc.subject.keywordDynamic
dc.subject.keywordIanus.
dc.subject.ucmFísica (Física)
dc.subject.ucmFísica-Modelos matemáticos
dc.subject.unesco22 Física
dc.titleJanus II: A new generation application-driven computer for spin-system simulations
dc.typejournal article
dc.volume.number185
dcterms.references[1] C. Angell, Science, 267, 1924 (1995). [2] P. Debenedetti, Metastable liquids, Princeton University Press, Princeton (1997). [3] R. Tripiccione, Comp. Phys. Comm., 169, 442 (2005). 4] J. Makino, et al., The Astrophysical Journal, 480, 432 (1997). [5] D. E. Shaw, et al., Communications of the ACM, 51, 91 (2008). [6] R. Pearson, J. Richardson, D. Toussaint, A Special, Purpose Machine for Monte Carlo Simulations, Tech. Report NSF-ITP-81-139, Inst. Theoretical Physics, Univ. California, Santa Barbara, 1981. [7] J.H. Condon, A.T. Ogielski, Rev. Sci. Instruments, 56 1691 (1985) --- A.T. Ogielski, Phys. Rev. B, 32, 7384 (1985). [8] J. Pech, et al., Comp. Phys. Comm., 106, 10 (1997) --- A. Cruz, et al., Comp. Phys. Comm., 133, 165 (2001). [9] F. Belletti, et al., Computing in Science & Engineering, 8, 41 (2006). [10] F. Belletti, et al., Computer Physics Communications, 178, 208 (2008). [11] F. Belletti, et al., Computing in Science & Engineering, 11, 48 (2009). [12] A. P. Young (editor), Spin Glasses and Random Fields (World Scientific, Singapore, 1998). [13] J. A. Mydosh, Spin Glasses: an Experimental Introduction (Taylor and Francis, London, 1993). [14] F. Barahona, J. Phys. A, 15, 3241 (1982). [15] S. F. Edwards, P. W. Anderson, J. Phys. F: Metal Phys., 5, 965 (1975) --- ibid., 6, 1927 (1976). [16] K. Binder, D. W. Heerman, Monte Carlo Simulation in Statistical Physics, (Springer, Berlin, 2010). [17] M. Creutz, Quantum Fields on the Computer, World Scientific, 1992. [18] A. D. Sokal, in Functional Integration: Basics and Applications (1996 Cargèse School), C. DeWitt-Morette, P. Cartier and A. Folacci eds. (Plenum, New York, 1997). [19] E. Marinari, G. Parisi, Europhys. Lett., 19. 451 (1992) --- K. Hukushima, K. Nemoto, J. Phys. Soc. Jpn., 65, 1604 (1996) --- M.C. Tesi, et al., J. Stat. Phys., 82, 155 (1996). [20] http://www.linkengineering.it [21] G. Parisi, F. Rapuano, Phys. Lett. B, 157, 301 (1985). [22] Janus Collaboration: F. Belletti, et al., Phys. Rev. Lett., 101, 157201 (2008). [23] Janus Collaboration: F. Belletti, et al., J. Stat. Phys., 135, 1121-1158 (2009). [24] Janus Collaboration: A. Cruz, et al, Phys. Rev. B, 79, 184408 (2009). [25] Janus Collaboration: R. A. Banos, et al., J. Stat. Mech., P06026 (2010). [26] Janus Collaboration: R. Álvarez Baños, et al., Phys. Rev. Lett., 105, 177202 (2010). [27] Janus Collaboration: R. A. Baños, et al., Phys. Rev. B, 84, 174209 (2011). [28] Janus Collaboration: R. A. Baños, et al., Proc. Natl. Acad. Sci. USA, 109, 6452 (2012). [29] Janus collaboration: M. Baity-Jesi, et al., arXiv:1307.4998. [30] M. Baity-Jesi, et al., The European Physical Journal: Special Topics, 210, 33-51 (2012). [31] M. Hasenbusch, A. Pelissetto, E. Vicari, Phys. Rev. B, 78, 214205 (2008). [32] Y. G. Joh, et al., Phys. Rev. Lett., 82, 438 (1999). [33] F. Bert, et al., Phys. Rev. Lett., 92, 167203 (2004). [34] L.A. Fernández, V. Martín-Mayor, G. Parisi, B. Seoane, arXiv:1307.2361. [35] A.J. Bray, M.A. Moore, Phys. Rev. B, 83, 224408 (2011). [36] A.P. Young, H.G. Katzgraber, Phys. Rev. Lett., 93, 207203 (2004). [37] T. Jörg, H. Katzgraber, F. Krzakala, Phys. Rev. Lett., 100, 197202, (2008) [38] A.P. Young, A. Sharma, Phys. Rev. B, 83, 214405 (2011). [39] V. Martín-Mayor, S. Pérez-Gaviro, Phys. Rev. B, 84, 024419 (2011). [40] E. Ilker, A. Nihat Berker, Phys. Rev. E, 87, 032124 (2013). [41] C. Michael, Phys. Rev. B, 33, 7861-7862 (1986). [42] G. Bhanot, D. Duke, R. Salvador, Phys. Rev. B, 33, 7841-7844 (1986). [43] M. Guidetti, et al., Spin Glass Monte Carlo Simulations on the Cell Broadband Engine in Proc. of PPAM09, LNCS 6067, 467-476 (Springer, Heidelberg 2010). [44] M. Guidetti, et al., Monte Carlo Simulations of Spin Systems on Multicore Processors K. Jonasson ed.), LNCS 7133, 220-230 (Springer, Heidelberg 2010). [45] A. Gabbana, M. Pivanti, S. F. Schifano, R. Tripiccione, Benchmarking MIC architectures with Monte Carlo simulations of spin glass systems, in Proceedings of the High Performance Computing Conference, 2013, Bangalore (India), in press.
dspace.entity.typePublication
relation.isAuthorOfPublication146096b1-5825-4230-8ad9-b2dad468673b
relation.isAuthorOfPublication061118c0-eadf-4ee3-8897-2c9b65a6df66
relation.isAuthorOfPublication33f82d50-c0e4-4628-a384-f8b256a4a84e
relation.isAuthorOfPublication.latestForDiscovery146096b1-5825-4230-8ad9-b2dad468673b

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
FernándezPérezLuisAntonio72LIBRE PREPRINT.pdf
Size:
1.41 MB
Format:
Adobe Portable Document Format

Collections