Janus II: A new generation application-driven computer for spin-system simulations
dc.contributor.author | Baity Jesi, Marco | |
dc.contributor.author | Fernández Pérez, Luis Antonio | |
dc.contributor.author | Martín Mayor, Víctor | |
dc.contributor.author | Muñoz Sudupe, Antonio | |
dc.date.accessioned | 2023-06-19T15:01:42Z | |
dc.date.available | 2023-06-19T15:01:42Z | |
dc.date.issued | 2014-02 | |
dc.description | © 2013 Elsevier B.V. Artículo firmado por 24 autores. We warmly acknowledge the excellent work done by the Janus II team at Link Engineering. In particular we thank Pietro Lazzeri, Pamela Pedrini, Roberto Preatoni, Luigi Trombetta and Alessandro Zambardi for their professional and enthusiastic work. The Janus II project was supported by the European Regional Development Fund (ERDF/2007-2013, FEDER project UNZA08-4E-020); by the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013, ERC grant agreement no. 247328); by the MICINN (Spain) (contracts FIS2012-35719-C02, FIS2010-16587); by Junta de Extremadura (contract GR101583); by the Italian Ministry of Education and Research (PRIN Grant 2010HXAW77 007). | |
dc.description.abstract | This paper describes the architecture, the development and the implementation of Janus II, a new generation application-driven number cruncher optimized for Monte Carlo simulations of spin systems (mainly spin glasses). This domain of computational physics is a recognized grand challenge of high-performance computing: the resources necessary to study in detail theoretical models that can make contact with experimental data are by far beyond those available using commodity computer systems. On the other hand, several specific features of the associated algorithms suggest that unconventional computer architectures – that can be implemented with available electronics technologies – may lead to order of magnitude increases in performance, reducing to acceptable values on human scales the time needed to carry out simulation campaigns that would take centuries on commercially available machines. Janus II is one such machine, recently developed and commissioned, that builds upon and improves on the successful JANUS machine, which has been used for physics since 2008 and is still in operation today. This paper describes in detail the motivations behind the project, the computational requirements, the architecture and the implementation of this new machine and compares its expected performances with those of currently available commercial systems. | |
dc.description.department | Depto. de Física Teórica | |
dc.description.faculty | Fac. de Ciencias Físicas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Unión Europea. FP7 | |
dc.description.sponsorship | Ministerio de Ciencia e Innovación (MICINN) | |
dc.description.sponsorship | European Regional Development Fund | |
dc.description.sponsorship | Junta de Extremadura (Spain) | |
dc.description.sponsorship | Italian Ministry of Education and Research | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/37243 | |
dc.identifier.doi | 10.1016/j.cpc.2013.10.019 | |
dc.identifier.issn | 0010-4655 | |
dc.identifier.officialurl | http://doi.org/10.1016/j.cpc.2013.10.019 | |
dc.identifier.relatedurl | http://www.sciencedirect.com/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/35157 | |
dc.issue.number | 2 | |
dc.journal.title | Computer physics communications | |
dc.language.iso | eng | |
dc.page.final | 559 | |
dc.page.initial | 550 | |
dc.publisher | Elsevier Science Ltd | |
dc.relation.projectID | CriPheRaSy (247328) | |
dc.relation.projectID | FIS2012-35719-C02 | |
dc.relation.projectID | FIS2010-16587 | |
dc.relation.projectID | FEDER project UNZA08-4E-020 | |
dc.relation.projectID | GR101583 | |
dc.relation.projectID | 2010HXAW77 007 | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 53 | |
dc.subject.keyword | Special-purpose computer | |
dc.subject.keyword | Monte-Carlo simulations | |
dc.subject.keyword | Glass models | |
dc.subject.keyword | Ising-model | |
dc.subject.keyword | Dynamic | |
dc.subject.keyword | Ianus. | |
dc.subject.ucm | Física (Física) | |
dc.subject.ucm | Física-Modelos matemáticos | |
dc.subject.unesco | 22 Física | |
dc.title | Janus II: A new generation application-driven computer for spin-system simulations | |
dc.type | journal article | |
dc.volume.number | 185 | |
dcterms.references | [1] C. Angell, Science, 267, 1924 (1995). [2] P. Debenedetti, Metastable liquids, Princeton University Press, Princeton (1997). [3] R. Tripiccione, Comp. Phys. Comm., 169, 442 (2005). 4] J. Makino, et al., The Astrophysical Journal, 480, 432 (1997). [5] D. E. Shaw, et al., Communications of the ACM, 51, 91 (2008). [6] R. Pearson, J. Richardson, D. Toussaint, A Special, Purpose Machine for Monte Carlo Simulations, Tech. Report NSF-ITP-81-139, Inst. Theoretical Physics, Univ. California, Santa Barbara, 1981. [7] J.H. Condon, A.T. Ogielski, Rev. Sci. Instruments, 56 1691 (1985) --- A.T. Ogielski, Phys. Rev. B, 32, 7384 (1985). [8] J. Pech, et al., Comp. Phys. Comm., 106, 10 (1997) --- A. Cruz, et al., Comp. Phys. Comm., 133, 165 (2001). [9] F. Belletti, et al., Computing in Science & Engineering, 8, 41 (2006). [10] F. Belletti, et al., Computer Physics Communications, 178, 208 (2008). [11] F. Belletti, et al., Computing in Science & Engineering, 11, 48 (2009). [12] A. P. Young (editor), Spin Glasses and Random Fields (World Scientific, Singapore, 1998). [13] J. A. Mydosh, Spin Glasses: an Experimental Introduction (Taylor and Francis, London, 1993). [14] F. Barahona, J. Phys. A, 15, 3241 (1982). [15] S. F. Edwards, P. W. Anderson, J. Phys. F: Metal Phys., 5, 965 (1975) --- ibid., 6, 1927 (1976). [16] K. Binder, D. W. Heerman, Monte Carlo Simulation in Statistical Physics, (Springer, Berlin, 2010). [17] M. Creutz, Quantum Fields on the Computer, World Scientific, 1992. [18] A. D. Sokal, in Functional Integration: Basics and Applications (1996 Cargèse School), C. DeWitt-Morette, P. Cartier and A. Folacci eds. (Plenum, New York, 1997). [19] E. Marinari, G. Parisi, Europhys. Lett., 19. 451 (1992) --- K. Hukushima, K. Nemoto, J. Phys. Soc. Jpn., 65, 1604 (1996) --- M.C. Tesi, et al., J. Stat. Phys., 82, 155 (1996). [20] http://www.linkengineering.it [21] G. Parisi, F. Rapuano, Phys. Lett. B, 157, 301 (1985). [22] Janus Collaboration: F. Belletti, et al., Phys. Rev. Lett., 101, 157201 (2008). [23] Janus Collaboration: F. Belletti, et al., J. Stat. Phys., 135, 1121-1158 (2009). [24] Janus Collaboration: A. Cruz, et al, Phys. Rev. B, 79, 184408 (2009). [25] Janus Collaboration: R. A. Banos, et al., J. Stat. Mech., P06026 (2010). [26] Janus Collaboration: R. Álvarez Baños, et al., Phys. Rev. Lett., 105, 177202 (2010). [27] Janus Collaboration: R. A. Baños, et al., Phys. Rev. B, 84, 174209 (2011). [28] Janus Collaboration: R. A. Baños, et al., Proc. Natl. Acad. Sci. USA, 109, 6452 (2012). [29] Janus collaboration: M. Baity-Jesi, et al., arXiv:1307.4998. [30] M. Baity-Jesi, et al., The European Physical Journal: Special Topics, 210, 33-51 (2012). [31] M. Hasenbusch, A. Pelissetto, E. Vicari, Phys. Rev. B, 78, 214205 (2008). [32] Y. G. Joh, et al., Phys. Rev. Lett., 82, 438 (1999). [33] F. Bert, et al., Phys. Rev. Lett., 92, 167203 (2004). [34] L.A. Fernández, V. Martín-Mayor, G. Parisi, B. Seoane, arXiv:1307.2361. [35] A.J. Bray, M.A. Moore, Phys. Rev. B, 83, 224408 (2011). [36] A.P. Young, H.G. Katzgraber, Phys. Rev. Lett., 93, 207203 (2004). [37] T. Jörg, H. Katzgraber, F. Krzakala, Phys. Rev. Lett., 100, 197202, (2008) [38] A.P. Young, A. Sharma, Phys. Rev. B, 83, 214405 (2011). [39] V. Martín-Mayor, S. Pérez-Gaviro, Phys. Rev. B, 84, 024419 (2011). [40] E. Ilker, A. Nihat Berker, Phys. Rev. E, 87, 032124 (2013). [41] C. Michael, Phys. Rev. B, 33, 7861-7862 (1986). [42] G. Bhanot, D. Duke, R. Salvador, Phys. Rev. B, 33, 7841-7844 (1986). [43] M. Guidetti, et al., Spin Glass Monte Carlo Simulations on the Cell Broadband Engine in Proc. of PPAM09, LNCS 6067, 467-476 (Springer, Heidelberg 2010). [44] M. Guidetti, et al., Monte Carlo Simulations of Spin Systems on Multicore Processors K. Jonasson ed.), LNCS 7133, 220-230 (Springer, Heidelberg 2010). [45] A. Gabbana, M. Pivanti, S. F. Schifano, R. Tripiccione, Benchmarking MIC architectures with Monte Carlo simulations of spin glass systems, in Proceedings of the High Performance Computing Conference, 2013, Bangalore (India), in press. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 146096b1-5825-4230-8ad9-b2dad468673b | |
relation.isAuthorOfPublication | 061118c0-eadf-4ee3-8897-2c9b65a6df66 | |
relation.isAuthorOfPublication | 33f82d50-c0e4-4628-a384-f8b256a4a84e | |
relation.isAuthorOfPublication.latestForDiscovery | 146096b1-5825-4230-8ad9-b2dad468673b |
Download
Original bundle
1 - 1 of 1
Loading...
- Name:
- FernándezPérezLuisAntonio72LIBRE PREPRINT.pdf
- Size:
- 1.41 MB
- Format:
- Adobe Portable Document Format