The four-dimensional site-diluted Ising model: A finite-size scaling study

Thumbnail Image
Full text at PDC
Publication Date
Ballesteros, H. G.
Parisi, G.
Ruiz Lorenzo, J. J.
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
Google Scholar
Research Projects
Organizational Units
Journal Issue
Using finite-size scaling techniques, we study the critical properties of the site-diluted Ising model in four dimensions. We carry out a high-statistics Monte Carlo simulation for several values of the dilution. The results support the perturbative scenario: there is only the Ising fixed point with large logarithmic scaling corrections. We obtain, using the Perturbative Renormalization Group, functional forms for the scaling of several observables that are in agreement with the numerical data.
© 1998 Elsevier Science B.V. We thank the CICyT (contracts AEN93-0604, AEN96-1634) for partial financial support, especially for the use of dedicated Pentium Pro machines on which we have carried out the simulations. JJRL is granted by EC HMC (ERBFMBICT950429). We also acknowledge to E. Luijten for pointing out the right scaling of the Binder cumulant in the pure case.
Unesco subjects
[1] A.B. Harris, J. Phys. C, 7 (1974) 1671. [2] G. Parisi, J.J. Ruiz-Lorenzo, J. Phys. A: Math. Gen., 28 (1995) L395. [3] E Cooper, B. Freedman, D. Preston, Nucl. Phys. B, 210 (1989) 210. [4] H.G. Ballesteros, L.A. Fernández, V. Martín-Mayor, A. Muñoz Sudupe, Phys. Lett. B, 378 (1996) 207 -- ibid., Phys. Lett. B, 387 (1996) 125 -- ibid., Nucl. Phys. B, 483 (1997) 707. [5] E. Brrzin, J. Phys. (Paris), 43 (1982) 15. [6] G. Parisi, Field Theory, Disorder and Simulations (World Scientific, Singapore, 1994). [7] A. Aharony, Phys. Rev. B, 13 (1976) 2092. [8] J.J. Ruiz-Lorenzo, in preparation. [9] M. Le Bellac, Quantum and Statistical Field Theory (Oxford Science Publ., Oxford, 1991 ). [10] J. Zinn-Justin, Quantum Field Theory and Critical Phenomena (Oxford Science Publ., Oxford, 1990). [11] E. Luijten, W.J. Blöte, Phys. Rev. Lett., 76 (1996) 1557 -- ibid., (E) 76 (1996) 3662. [12] A.C.D. van Enter, R. Fernández, A.D. Sokal, J. Stat. Phys., 72 (1994) 879. [13] M.E. Fisher, in Renormalization Group in Critical Phenomena and Quantum Field Theory: Proceedings of a conference (Temple University, Philadelphia, PE, 1974). [14] R. Kenna, C.B. Lang, Phys. Lett. B, 264 (1991) 396 -- ibid., Nucl. Phys. B, 393 (1993) 461. [15] U. Wolff, Phys. Rev. Lett., 62 (1989) 3834. [16] R.H. Swendsen, J.S. Wang, Phys. Rev. Let., 58 (1987) 86. [17] A.D. Sokal, Bosonic algorithms, in Quantum Fields on the Computer, Advanced Series on Direction in High Energy Physics, ed. M. Creutz, Vol. 11 (World Scientific, Singapore, 1992). [18] M. Falcioni, E. Marinari, M.L. Paciello, G. Parisi, B. Taglienti, Phys. Lett., 108 (1982) 331 -- A.M. Ferrenberg, R.H. Swendsen, Phys. Rev. Lett., 61 (1988) 2635. [19] H.G. Ballesteros, L.A. Fernández, V. Martín-Mayor, A. Muñoz Sudupe, G. Parisi, J.J. Ruiz-Lorenzo, Phys. Lett. B, 400 (1997) 346. [20] J.K. Kim, A. Patrascioiu, Phys. Rev. Lett., 72 (1994) 2785 -- ibid., Phys. Rev. B, 49 (1994) 15764. [21] H.G. Ballesteros, L.A. Fernández, V. Martín-Mayor, A. Muñoz Sudupe, G. Parisi, J.J. Ruiz-Lorenzo, J. Phys. A: Math. Gen., 30 (1997) 8379. [22] ED.A. Aarfio Reis, S.L.A. de Queiroz, R.R. dos Santos, Phys. Rev. B, 56 (1997) 6013. [23] K. Binder, Z. Phys. B, 43 (1981) 119. [24] G. Parisi, J.J. Ruiz-Lorenzo, Phys. Rev. B, 54 (1996) 3698. [25] D.J. Amit, Field Theory, the Renormalization Group and Critical Phenomena, Rev. 2nd Ed. (World Scientific, Singapore, 1984).