Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Some results about the approximate controllability property for quasilinear diffusion equations

dc.contributor.authorDíaz Díaz, Jesús Ildefonso
dc.contributor.authorRamos Del Olmo, Ángel Manuel
dc.date.accessioned2023-06-20T16:54:44Z
dc.date.available2023-06-20T16:54:44Z
dc.date.issued1997-06
dc.description.abstractWe study the approximate controllability property for y(t) - Delta phi(y) = u chi(omega), on Omega x (0, T), where Omega is a bounded open set of R-N and omega subset of Omega. First, we show some negative results for the case phi(s) = \s\(m-1)s, 0 < m < 1, by means of an obstruction phenomenon. In a second part, we obtain a positive answer on the space H-1-gamma(Omega), for any gamma > 0, for a class of functions phi essentially linear at infinity, by using a higher order vanishing viscosity argument.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/15821
dc.identifier.doi10.1016/S0764-4442(99)80407-8
dc.identifier.issn0764-4442
dc.identifier.officialurlhttp://www.sciencedirect.com/science/article/pii/S0764444299804078
dc.identifier.relatedurlhttp://www.sciencedirect.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/57404
dc.issue.number11
dc.journal.titleComptes Rendus de l'Académie des Sciences. Série I. Mathématique
dc.language.isofra
dc.page.final1248
dc.page.initial1243
dc.publisherElsevier
dc.rights.accessRightsrestricted access
dc.subject.cdu517.977
dc.subject.keywordquasilinear diffusion equation
dc.subject.keywordapproximate controllability
dc.subject.ucmEcuaciones diferenciales
dc.subject.unesco1202.07 Ecuaciones en Diferencias
dc.titleSome results about the approximate controllability property for quasilinear diffusion equations
dc.typejournal article
dc.volume.number324
dcterms.referencesC. Bandle, M. Markus. “Large” solutions of semilinear elliptic equations: existence, uniqueness and asymptotic behaviour. Journal d'Analyse Mathématique, 58 (1992), pp. 9–24 H. Brézis. Monotonicity methods in Hilbert spaces and some applications to nonlinear partial differential equations. E. Zarantonello (Ed.), Nonlinear Functional Analysis, Academic Press (1971), pp. 101–156 H. Brézis. Opérateurs Maximaux Monotones et Semi-groupes de Contractions dans les Espaces de Hilbert. North-Holland, New York (1973) A. Damlamian. Some results on the multi-phase Stefan problem. Comm. Part. Diff. Eq., 2 (1977), pp. 1017–1044 J.I. Díaz, A.M. Ramos. On the Approximate Controllability for Higher Order Parabolic Nonlinear Equations of Cahn-Hilliard Type. To appear in Proceedings of the International Conference on Control and Estimation of DistributedParameter Systems (1997). C. Fahre, J.P. Puel, E. Zuazua. Approximate controllability of the semilinear heat equation. Proceedings of the Royal Society of Edinburgh, 125A (1995), pp. 31–61 M.A. Herrero, M. Pierre. The Cauchy Problem for ut = Δum when 0 < m < 1. Trans. Amer. Math.Soc., 291 (1985), pp. 145–158 A.S. Kalashnikov. Some problems of the qualitative theory of nonlinear degenerate second-order parabolic equations. Russ. Math. Survs., 42 (1987), pp. 169–222 J.-L.Lions. Remarques sur la contrôlabilité approchée.Proceedings of Jornadas Hispano-Francesas sobreControl de Sistemas Distribuidos, Univ. de Malaga, Vorau (Austria) (1990), pp. 77–88 J. Simon. Compact Sets in the Space Lp(0, T;B). Serie 4 Annali di Mat. Pura ed Appl., 146 (1987), pp. 65–96.
dspace.entity.typePublication
relation.isAuthorOfPublication34ef57af-1f9d-4cf3-85a8-6a4171b23557
relation.isAuthorOfPublication581c3cdf-f1ce-41e0-ac1e-c32b110407b1
relation.isAuthorOfPublication.latestForDiscovery34ef57af-1f9d-4cf3-85a8-6a4171b23557

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
93.pdf
Size:
430.27 KB
Format:
Adobe Portable Document Format

Collections