Localization and blow-up of thermal waves in nonlinear heat-conduction with peaking
dc.contributor.author | Gilding, B. H. | |
dc.contributor.author | Herrero, Miguel A. | |
dc.date.accessioned | 2023-06-20T17:06:22Z | |
dc.date.available | 2023-06-20T17:06:22Z | |
dc.date.issued | 1988 | |
dc.description.abstract | The authors consider the initial-boundary value problem for the porous medium equation ut =(um)xx in (0,∞)×(0,T), where m>1, 0<T<∞, with initial and boundary conditions u(x,0)= u0(x)≥0 in (0,∞), sup u0<∞, u0 has compact support, u(0,t)=ψ(t) for t (0,T), u0 and ψ are given nonnegative continuous functions and ψ(t)is monotonic increasing. The behaviour of the solution u(x,t) and the free boundary ζ(t)=sup{x[0,∞) : u(x,t)>0}as t↑T under the hypothesis that ψ(t)↑∞ as t↑T is investigated. The effect of localization of the blowing-up boundary function when lim sup t↑T ζ(t)<∞ is investigated. It is established that localization occurs if and only if lim sup t↑T (∫ t 0 ψ m (s)ds)/ψ(t)<∞, and some estimates concerning the asymptotic behaviour of the solution near the singular point t=T and in the blow-up set Ω={x≥0: lim sup t↑T u(x,t)=∞} are given. Various estimates from above and below on the length ω=supΩ of the blow-up set are obtained. These theorems make more precise some previous results concerning the localization of the boundary blowing-up function which were given in the book by A. A. Samarskiĭ, the reviewer et al. [Peaking modes in problems for quasilinear parabolic equations(Russian), "Nauka'', Moscow, 1987]. Proofs of the theorems are based on comparison with some explicit solutions and on construction of different kinds of weak sub- and supersolutions. The authors use some special integral identities and estimates of the solution and its derivatives by means of the maximum principle. A special comparison theorem above blow-up sets for different boundary functions is proved. | |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.faculty | Instituto de Matemática Interdisciplinar (IMI) | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/17533 | |
dc.identifier.doi | 10.1007/BF01456972 | |
dc.identifier.issn | 0025-5831 | |
dc.identifier.officialurl | http://www.springerlink.com/content/m62t601816k1m5q5/ | |
dc.identifier.relatedurl | http://www.springerlink.com | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/57778 | |
dc.issue.number | 2 | |
dc.journal.title | Mathematische Annalen | |
dc.language.iso | eng | |
dc.page.final | 242 | |
dc.page.initial | 223 | |
dc.publisher | Springer | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 517.9 | |
dc.subject.cdu | 517.956.4 | |
dc.subject.cdu | 536.2 | |
dc.subject.keyword | Porous media equation | |
dc.subject.keyword | initial-boundary value problem | |
dc.subject.keyword | nonnegative generalized solution | |
dc.subject.keyword | free boundary | |
dc.subject.keyword | nonlinear heat conduction | |
dc.subject.keyword | thermal wave | |
dc.subject.keyword | localization | |
dc.subject.keyword | blow-up | |
dc.subject.ucm | Ecuaciones diferenciales | |
dc.subject.unesco | 1202.07 Ecuaciones en Diferencias | |
dc.title | Localization and blow-up of thermal waves in nonlinear heat-conduction with peaking | |
dc.type | journal article | |
dc.volume.number | 282 | |
dcterms.references | Caffarelli, L.A, Friedman, A.: Continuity of the density of a gas flow in a porous medium. Trans. Am. Math. Soc. 252, 99-113 (1979) Galaktionov, V.A., Kurdyumov, S.P., Mikhaílov, A.P., Samarskii, A.A.: Asymptotic stage of regimes with peaking and effective heat localization in nonlinear heat-conduction problems. Differ. Equations 16, 743-750 (1980). Translation of: Differ. Uravn. 16, 1196-1204 (1980) Galaktionov, V.A., Samarskii, A.A.: Methods of constructing approximate self-similar solutions of nonlinear heat equations. I. Math. USSR-Sb. 46, 291-321 (1983). Translation of: Mat. Sb. (N.S.) 118, 291-322, 431 (1982) Gilding, B.H.: Stabilization of flows through porous media. SIAM J. Math. Anal. 10, 237-246 (1979) Gilding, B.H.: On a cIass of similarity solutions of the porous media equation. III. 1. Math. Anal. Appl. 77, 381-402 (1980) Gilding, B.H.: Improved theory for a nonlinear degenerate parabolic equation. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) (to appear) Gilding, B.H., Peletier, L.A.: On a class of similarity solutions of the porous media equation. J. Math. Anal. Appl. 55, 351-364 (1976) Gilding, B.H., Peletier, L.A.: On a class of similarity solutions of the porous media equation. II. J. Math. Anal. Appl. 57, 522-538 (1977) Kalashnikov, A.S.: The occurrence of singularities in solutions of the non-steady seepage equation. U.S.S.R. Comput. Math. and Math. Phys. 7, 269-275 (1967). Translation of: Zh. Vychisl. Mat. i Mat. Fiz. 7, 440-444 (1967) Kurdyumov, S.P., Kurkina, E.S., Malinetskii, G.G., Samarskii, A.A.: Dissipative structures in an inhomogeneous nonlinear burning medium. Soviet Phys. Dokl. 25, 167-169 (1980). Translation of: Dokl. Akad. Nauk SSSR 251, 587-591 (1980) Kurdyumov, S.P., Malínetskii, G.G., Poveshchenko, Yu.A., Popov, Yu.P., Samarskii, AA: Interaction of dissipative thermal structures in nonlinear media. Soviet Phys. Dokl. 25, 252-254 (1980). Translation of: Dokl. Akad. Nauk SSSR 251, 836-839 (1980) Likht, M.K.: On the propagation of perturbations in problems connected with degenerate quasilinear parabolic equations. Differential Equations 2, 496-498 (1966). Translation of: Dilferentsial'nye Uravneniya 2, 953-957 (1966) Oleinik, O.A., Kalashnikov, A.S., Chzhou Y.-L.: The Cauchy problem and boundary problems for equations of the type of non-stationary filtration (in Russian). Izv. Akad. Nauk SSSR Ser. Mat. 22, 667-704 (1958) Peletier, LA: The porous media equation. In: Amann, H., Bazley, N., Kirchgassner, K. (eds.) Applications of nonlinear analysis in the physical sciences, pp. 229-241. Boston: Pitman Advanced Publishing Program 1981 Samarskii, A.A., Elenin, G.G., Zmitrenko, N.V., Kurdyumov, S.P., Mikhailov, A.P.: The burning of a nonlinear medium in the form of complex structures. Soviet Phys. Dokl. 22, 737-739 (1977). Translation of: Dokl. Akad. Nauk SSSR 237, 1330-1333 (1977) Samarskii, A.A., Galaktionov, VA, Kurdyumov, S.P., Mikhailov, A.P.: Localization of diffusion processes in media with constant properties. Soviet Phys. Dokl. 24, 543-545 (1979). Translation of: Dok1. Akad. Nauk SSSR 247, 349-353 (1979) Samarskii, A.A., Zmitrenko, N.V., Kurdyumov, S.P., Mikhailov, A.P.: Effect of metastable localization of heat in a medium with nonlinear thermal conductivity. Soviet Phys. Dokl. 20, 554-556 (1976). Translation of: Dokl. Akad. Nauk SSSR 223, 1344-1347 (1975) Samarskii,A.A., Zmitrenko, N.V., Kurdyumov, S.P., Mikhailov, A.P.: Thermal structures and fundamental length in a medium with nonlinear heat conduction and volumetric heat sources. Soviet Phys. Dokl. 21, 141-143 (1976). Translation of: Dokl. Akad. Nauk SSSR 227, 321-324 (1976) Sattinger, D.H.: On the total variation of solutions of parabolic equations. Math. Ann. 183, 78-92 (1969) Stokes, A.N.: Intersections of solutions of nonlinear parabolic equations. J. Math. Anal. Appl. 60, 721-727 (1977) Zel'dovich, Ya.B., Raizer, Yu.P.: Physics of shock waves and high-temperature hydrodynamic phenomena. Vol. 1: New York: Academic Press 1966. Vol. 11: New York: Academic Press 1967 | |
dspace.entity.type | Publication |
Download
Original bundle
1 - 1 of 1