Para depositar en Docta Complutense, identifícate con tu correo @ucm.es en el SSO institucional. Haz clic en el desplegable de INICIO DE SESIÓN situado en la parte superior derecha de la pantalla. Introduce tu correo electrónico y tu contraseña de la UCM y haz clic en el botón MI CUENTA UCM, no autenticación con contraseña.

An FPGA Accelerator for Real-Time Lossy Compression of Hyperspectral Images

dc.contributor.authorBascones García, Daniel
dc.contributor.authorGonzález Calvo, Carlos
dc.contributor.authorMozos Muñoz, Daniel
dc.date.accessioned2025-01-30T16:13:09Z
dc.date.available2025-01-30T16:13:09Z
dc.date.issued2020
dc.description.abstractHyperspectral images offer great possibilities for remote studies, but can be difficult to manage due to their size. Compression helps with storage and transmission, and many efforts have been made towards standardizing compression algorithms, especially in the lossless and near-lossless domains. For long term storage, lossy compression is also of interest, but its complexity has kept it away from real-time performance. In this paper, JYPEC, a lossy hyperspectral compression algorithm that combines PCA and JPEG2000, is accelerated using an FPGA. A tier 1 coder (a key step and the most time-consuming in JPEG2000 compression) was implemented in a heavily pipelined fashion. Results showed a performance comparable to that of existing 0.18 μm CMOS implementations, all while keeping a small footprint on FPGA resources. This enabled the acceleration of the most complex step of JYPEC, bringing the total execution time below the real-time constraint.en
dc.description.departmentDepto. de Arquitectura de Computadores y Automática
dc.description.facultyFac. de Informática
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Economía, Comercio y Empresa (España)
dc.description.statuspub
dc.identifier.citationD. Báscones, C. González, y D. Mozos, «An FPGA Accelerator for Real-Time Lossy Compression of Hyperspectral Images», Remote Sensing, vol. 12, n.o 16, p. 2563, ago. 2020, doi: 10.3390/rs12162563.
dc.identifier.doi10.3390/rs12162563
dc.identifier.officialurlhttps://doi.org/10.3390/rs12162563
dc.identifier.relatedurlhttps://www.mdpi.com/2072-4292/12/16/2563
dc.identifier.urihttps://hdl.handle.net/20.500.14352/117391
dc.issue.number16
dc.journal.titleRemote Sensing 2020
dc.language.isoeng
dc.page.final20
dc.page.initial1
dc.publisherMDPI
dc.relation.projectIDinfo:eu-repo/grantAgreement/TIN2017-87237-P
dc.relation.projectIDinfo:eu-repo/grantAgreement/TIN2013-40968-P
dc.rightsAttribution 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.cdu004
dc.subject.keywordhyperspectral image
dc.subject.keywordreal time
dc.subject.keywordlossy compression
dc.subject.keywordFPGA
dc.subject.keywordPCA
dc.subject.keywordJPEG2000
dc.subject.keywordEBCOT
dc.subject.ucmCiencias
dc.subject.unesco33 Ciencias Tecnológicas
dc.titleAn FPGA Accelerator for Real-Time Lossy Compression of Hyperspectral Images
dc.typejournal article
dc.type.hasVersionAM
dc.volume.number12
dspace.entity.typePublication
relation.isAuthorOfPublication7091b4d5-39d3-464a-be38-0863f757e2c9
relation.isAuthorOfPublication7888cab2-e944-4a9d-aa87-90e483db5a05
relation.isAuthorOfPublication4c67f647-780c-4c6a-84dd-5962fb0a6260
relation.isAuthorOfPublication.latestForDiscovery7091b4d5-39d3-464a-be38-0863f757e2c9

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
remotesensing-2020.pdf
Size:
1.48 MB
Format:
Adobe Portable Document Format

Collections