Para depositar en Docta Complutense, identifícate con tu correo @ucm.es en el SSO institucional: Haz clic en el desplegable de INICIO DE SESIÓN situado en la parte superior derecha de la pantalla. Introduce tu correo electrónico y tu contraseña de la UCM y haz clic en el botón MI CUENTA UCM, no autenticación con contraseña.
 

Solving the Schrödinger Equation with Genetic Algorithms: A Practical Approach

dc.contributor.authorLahoz Beltrá, Rafael
dc.date.accessioned2023-06-22T12:34:44Z
dc.date.available2023-06-22T12:34:44Z
dc.date.issued2022-11-27
dc.description.abstractThe Schrödinger equation is one of the most important equations in physics and chemistry and can be solved in the simplest cases by computer numerical methods. Since the beginning of the 1970s, the computer began to be used to solve this equation in elementary quantum systems, and, in the most complex case, a ‘hydrogen-like’ system. Obtaining the solution means finding the wave function, which allows predicting the physical and chemical properties of the quantum system. However, when a quantum system is more complex than a ‘hydrogen-like’ system, we must be satisfied with an approximate solution of the equation. During the last decade, application of algorithms and principles of quantum computation in disciplines other than physics and chemistry, such as biology and artificial intelligence, has led to the search for alternative techniques with which to obtain approximate solutions of the Schrödinger equation. In this work, we review and illustrate the application of genetic algorithms, i.e., stochastic optimization procedures inspired by Darwinian evolution, in elementary quantum systems and in quantum models of artificial intelligence. In this last field, we illustrate with two ‘toy models’ how to solve the Schrödinger equation in an elementary model of a quantum neuron and in the synthesis of quantum circuits controlling the behavior of a Braitenberg vehicle.
dc.description.departmentDepto. de Biodiversidad, Ecología y Evolución
dc.description.facultyFac. de Ciencias Biológicas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/76307
dc.identifier.doi10.3390/computers11120169
dc.identifier.issnElectronic: 2073-431X
dc.identifier.officialurlhttps://doi.org/10.3390/computers11120169
dc.identifier.urihttps://hdl.handle.net/20.500.14352/72866
dc.issue.number12
dc.journal.titleComputers
dc.language.isoeng
dc.publisherMDPI
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/
dc.subject.cdu51:57
dc.subject.cdu575
dc.subject.keywordSchrödinger’s equation
dc.subject.keywordwave function
dc.subject.keywordgenetic algorithms
dc.subject.keywordquantum computing
dc.subject.keywordquantum artificial intelligence
dc.subject.keywordquantum neuron
dc.subject.keywordquantum braitenberg vehicle
dc.subject.ucmBiomatemáticas
dc.subject.ucmGenética
dc.subject.unesco2404 Biomatemáticas
dc.subject.unesco2409 Genética
dc.titleSolving the Schrödinger Equation with Genetic Algorithms: A Practical Approach
dc.typejournal article
dc.volume.number11
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Lahoz-Beltra-DBEE-Solving-the-Schrodinger.pdf
Size:
4.96 MB
Format:
Adobe Portable Document Format

Collections