Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Elliptic-equations and steiner symmetrization

dc.contributor.authorDíaz Díaz, Jesús Ildefonso
dc.contributor.authorAlvino, A.
dc.contributor.authorLions, P.L.
dc.contributor.authorTrombetti, G.
dc.date.accessioned2023-06-20T16:57:18Z
dc.date.available2023-06-20T16:57:18Z
dc.date.issued1992-06-18
dc.description.abstractWe present a new proof of comparison results via Steiner symmetrization for solutions of elliptic equations. This proof relies upon a "level sets" argument.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/16258
dc.identifier.issn0764-4442
dc.identifier.officialurlhttp://onlinelibrary.wiley.com/doi/10.1002/(SICI)1097-0312(199603)49:3%3C217::AID-CPA1%3E3.0.CO;2-G/pdf
dc.identifier.urihttps://hdl.handle.net/20.500.14352/57505
dc.issue.number13
dc.journal.titleComptes Rendus de l'Académie des Sciences. Série I. Mathématique
dc.language.isoeng
dc.page.final1020
dc.page.initial1015
dc.publisherElsevier
dc.rights.accessRightsrestricted access
dc.subject.cdu517.937
dc.subject.keywordSteiner symmetrization
dc.subject.ucmEcuaciones diferenciales
dc.subject.unesco1202.07 Ecuaciones en Diferencias
dc.titleElliptic-equations and steiner symmetrization
dc.typejournal article
dc.volume.number314
dcterms.referencesAlvino, A., Diaz, J. I., Lions, P. L., and Trombetti, G., Equation elliptiques et symétrization de Steiner, C. R. Acad. Sci. Paris Sér. I Math. 314, 1992, pp. 1015–1020. Alvino, A., Lions, P. L., and Trombetti, G., A remark on comparison results via symmetrization, Proc. Edinburgh Math. Soc. 102A, 1986, pp. 37–48. Alvino, A., Lions, P. L., and Trombetti, G., Comparison results for elliptic and parabolic equations via Schwarz symmetrization, Ann. Inst. H. Poincaré Anal. Non Linéaire 7, 1990, pp. 37–65. Alvino, A., Lions, P. L., and Trombetti, G., Comparison results for elliptic and parabolic equations via symmetrization: a new approach, Differential Integral Equations 4, 1991, pp. 25–50. Alvino, A., and Trombetti, G., Sulle migliori costanti di maggiorazioni per una classe di equazioni ellittiche degeneri, Ricerche Mat. 27, 1978, pp. 413–428. Alvino, A., and Trombetti, G., Equazioni ellittiche con termini di ordine inferiore e riordinamenti, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (8) 66, 1979, pp. 194–200. Bandle, C., Isoperimetric Inequalities and Applications, Pitman, London, 1980. Bandle, C., On symmetrization in parabolic equations, J. Anal. Math. 30, 1976, pp. 98–112. Bandle, C., and Kawhol, B., Application de la symétrization de Steiner aux problèmes de Poisson, preprint, 1992. Chiti, G., Norme di Orlicz delle soluzioni di una classe di equazioni ellittiche, Boll. Un. Mat. Ital. A (5) 16, 1979, pp. 178–185. De Giorgi, E., Su una teoria generale della misura (r - 1)-dimensionale in uno spazio ad r-dimensioni, Ann. Mat. Pura Appl. 36, 1954, pp. 191–213. Hardy, G. H., Littlewood, J. E., and Polya, G., Inequalities, Cambridge University Press, 1964. Laurence, P., and Stredulinsky, E. W., A bootstrap argument for Grad generalized differential equations, Indiana Univ. Math. J. 38, 1989, pp. 377–415. Lions, P. L., Quelques rémarques sur la symétrization de Schwarz, In: Nonlinear Partial Differential Equations and Their Applications, Coll. de France Semin., 1, Pitman, London, 1980. Maderna, C., Pagani, D., and Salsa, S., Quasilinear elliptic equations with quadratic growth in the gradient, J. Differential Equations 97, 1992, pp. 54–70. Mossino, J., and Rakotoson, J. M., Isoperimetric inequalities in parabolic equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 13, 1986, pp. 51–73. Rakotoson, J.-M., and Simon, B., Relative rearrangement on a measure space; application to the regularity of weighted monotone rearrangements. Parts I and II, Appl. Math. Lett. 6, 1993, pp. 75–82. Talenti, G., Elliptic equations and rearrangements, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 3, 1976, pp. 697–718. Talenti, G., Nonlinear elliptic equations, rearrangements of functions and Orlicz spaces, Ann. Mat. Pura Appl. 120, 1979, pp. 159–184. Talenti, G., Linear elliptic P.D.E.'S: level sets, rearrangements and a priori estimates of solutions, Boll. Un. Mat. Ital. B (6), 4, 1985, pp. 917–949. Weinberger, H., Symmetrization in uniformly elliptic problems. Studies in Math. Anal., Stanford University Press, 1962.
dspace.entity.typePublication
relation.isAuthorOfPublication34ef57af-1f9d-4cf3-85a8-6a4171b23557
relation.isAuthorOfPublication.latestForDiscovery34ef57af-1f9d-4cf3-85a8-6a4171b23557

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
113.pdf
Size:
640.06 KB
Format:
Adobe Portable Document Format

Collections