Caracterización y predicción de variables de calidad de vida y prestación de servicios en municipios de la Comunidad de Madrid mediante algoritmos de aprendizaje automático
Loading...
Official URL
Full text at PDC
Publication date
2023
Defense date
06/2023
Authors
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Citation
Abstract
Este estudio tiene como objetivo aplicar algoritmos de aprendizaje automático para la caracterización de municipios en la Comunidad de Madrid, analizando variables relacionadas con la prestación de servicios y la calidad de vida. También se busca predecir algunas de estas variables y encontrar factores que expliquen las diferencias entre los municipios.
Para lograr estos objetivos, se construyó una base de datos que recopila información relevante sobre los municipios de la Comunidad de Madrid. Se emplearon diversas aproximaciones en el análisis de datos, centrándose en la predicción de la esperanza de vida al nacer utilizando algoritmos de aprendizaje supervisado y la clasificación correspondiente a dicha variable. Además, se exploró la clusterización del territorio basada en variables de calidad de vida y prestación de servicios.
Los resultados obtenidos revelaron patrones interesantes y proporcionaron información valiosa sobre las diferencias entre los municipios en términos de variables socioeconómicas y para estudios posteriores y tienen implicaciones significativas para la toma de decisiones en políticas públicas encaminadas a mejorar de la calidad de vida de las personas.
This study aims to apply machine learning algorithms for the characterization of municipalities in the Community of Madrid, analyzing variables related to service provision and quality of life. It also aims to predict some of these variables and identify factors that explain the differences between municipalities. To achieve these objectives, a database was constructed to gather relevant information about the municipalities in the Community of Madrid. Various data analysis approaches were employed, focusing on predicting life expectancy at birth using supervised learning algorithms and the corresponding classification. Additionally, territory clustering was explored based on variables related to quality of life and service provision. The obtained results revealed interesting patterns and provided valuable information about the differences between municipalities in terms of socioeconomic variables. The machine learning algorithms demonstrated promising capabilities in predicting life expectancy at birth and classifying municipalities according to their characteristics. These findings have significant implications for decision-making in public policies aimed at improving the quality of life of individuals.
This study aims to apply machine learning algorithms for the characterization of municipalities in the Community of Madrid, analyzing variables related to service provision and quality of life. It also aims to predict some of these variables and identify factors that explain the differences between municipalities. To achieve these objectives, a database was constructed to gather relevant information about the municipalities in the Community of Madrid. Various data analysis approaches were employed, focusing on predicting life expectancy at birth using supervised learning algorithms and the corresponding classification. Additionally, territory clustering was explored based on variables related to quality of life and service provision. The obtained results revealed interesting patterns and provided valuable information about the differences between municipalities in terms of socioeconomic variables. The machine learning algorithms demonstrated promising capabilities in predicting life expectancy at birth and classifying municipalities according to their characteristics. These findings have significant implications for decision-making in public policies aimed at improving the quality of life of individuals.