Assessment of tillage erosion by mouldboard
plough in Tuscany (Italy)
Loading...
Full text at PDC
Publication date
2006
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier Science B.V.
Citation
Abstract
This study was designed to characterise the soil translocation effect induced by mouldboard ploughing with an implement
traditionally used in the Tuscany region (Central Italy).We discuss the results of a set of field experiments performed to measure
soil displacement along slopes of varying gradient in different directions and at several depths of tillage. Using the Soil Erosion
by Tillage (SETi) model, soil translocation patterns for different tillage scenarios were analysed, with special attention paid to
the effects of the direction and depth of tillage on the extent and spatial pattern of soil movement. The lateral slope gradient SP
and tillage depth D were found to be the dominant controlling factors for total soil displacement. The effect of the slope gradient
in a direction parallel to tillage ST was much less pronounced. These findings reveal the importance of the asymmetric nature of
the soil movement produced by mouldboard ploughing and the predominant effect of the lateral displacement dP on the actual
trajectory of soil motion. Results demonstrate that spatial patterns of soil redistribution due to mouldboard ploughing are highly
variable and depend on the particular characteristics of the implement used. This dependence is so strong that maximum
downslope soil translocation can occur during both, contour tillage or up–down tillage. For this particular mouldboard plough,
maximum downslope soil transport took place at a tillage direction ca. 708 and not when tillage was conducted along the steepest
slope direction (08). These findings highlight the potential of the combined approach applied. The physically based SETi model
can be properly calibrated using a relatively limited dataset from field experiments. Once calibrating, the SETi model can then be
used to generate synthetic tillage translocation relationships, which can predict the intensity and spatial pattern of soil
translocation over a much wider range of tillage scenarios than the particular experimental conditions, in terms of topography
complexity (slope gradients and morphology) and the direction and depth of tillage. These synthetic relationships are useful
tools for evaluating strategies designed to reduce tillage erosion.