Publication:
What They Did Not Tell You About Algebraic (Non-)Existence, Mathematical (IR-)Regularity and (Non-)Asymptotic Properties of the Full BEKK Dynamic Conditional Covariance Model

dc.contributor.authorMcAleer, Michael
dc.date.accessioned2023-06-17T17:54:15Z
dc.date.available2023-06-17T17:54:15Z
dc.date.issued2019
dc.description.abstractPersistently high negative covariances between risky assets and hedging instruments are intended to mitigate against risk and subsequent financial losses. In the event of having more than one hedging instrument, multivariate covariances need to be calculated. Optimal hedge ratios are unlikely to remain constant using high frequency data, so it is essential to specify dynamic covariance models. These values can either be determined analytically or numerically on the basis of highly advanced computer simulations. Analytical developments are occasionally promulgated for multivariate conditional volatility models. The primary purpose of the paper is to analyse purported analytical developments for the most widely-used multivariate dynamic conditional covariance model to have been developed to date, namely the Full BEKK model of Baba et al. (1985), which was published as Engle and Kroner (1995). Dynamic models are not straightforward (or even possible) to translate in terms of the algebraic existence, underlying stochastic processes, specification, mathematical regularity conditions, and asymptotic properties of consistency and asymptotic normality, or the lack thereof. The paper presents a critical analysis, discussion, evaluation and presentation of caveats relating to the Full BEKK model, and an emphasis on the numerous dos and don’ts in implementing Full BEKK in practice.
dc.description.facultyFac. de Ciencias Económicas y Empresariales
dc.description.facultyInstituto Complutense de Análisis Económico (ICAE)
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/54810
dc.identifier.citationBaba, Y., R. Engle, D. Kraft and K. Kroner (1985), Multivariate simultaneous generalized ARCH, Unpublished Paper, University of California, San Diego. [Published as Engle and Kroner (1995)]. Bollerslev, T. (1986), Generalized autoregressive conditional heteroskedasticity, Journal of Econometrics, 31, 307-327. Chang, C.-L. and M. McAleer (2019), The fiction of full BEKK: Pricing fossil fuels and carbon emissions, Finance Research Letters, 28, 11-19. Comte, F. and O. Lieberman (2003), Asymptotic theory for multivariate GARCH processes, Journal of Multivariate Analysis, 84, 61-84. Engle, R.F. (1982), Autoregressive conditional heteroskedasticity, with estimates of the variance of United Kingdom inflation, Econornetrica, 50, 987-1007. Engle, R.F. and K.F. Kroner (1995), Multivariate simultaneous generalized ARCH, Econometric Theory, 11(1), 122-150. Hafner, C.M. and A. Preminger (2009), On asymptotic theory for multivariate GARCH models, Journal of Multivariate Analysis, 100, 2044-2054. McAleer, M. (2014), Asymmetry and leverage in conditional volatility models, Econometrics, 2(3), 145-150. McAleer, M. (2019), What they did not tell you about algebraic (non-)existence, mathematical (ir-)regularity and (non-)asymptotic properties of the dynamic conditional correlation (DCC) model, unpublished paper, Department of Finance, Asia University, Taiwan. McAleer, M., F. Chan, S. Hoti and O. Lieberman (2008), Generalized autoregressive conditional correlation, Econometric Theory, 24(6), 1554-1583. Tsay, R.S. (1987), Conditional heteroscedastic time series models, Journal of the American Statistical Association, 82, 590-604.
dc.identifier.issn2341-2356
dc.identifier.relatedurlhttps://www.ucm.es/icae/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/17473
dc.issue.number18
dc.language.isoeng
dc.page.total13
dc.publisherFacultad de CC Económicas y Empresariales. Instituto Complutense de Análisis Económico (ICAE)
dc.relation.ispartofseriesDocumentos de Trabajo del Instituto Complutense de Análisis Económico (ICAE)
dc.rights.accessRightsopen access
dc.subject.jelC22
dc.subject.jelC32
dc.subject.jelC51
dc.subject.jelC52
dc.subject.jelC58
dc.subject.jelC61
dc.subject.jelG32
dc.subject.keywordHedging
dc.subject.keywordCovariances
dc.subject.keywordExistence
dc.subject.keywordMathematical regularity
dc.subject.keywordInevitability
dc.subject.keywordLikelihood function
dc.subject.keywordStatistical asymptotic properties
dc.subject.keywordCaveats
dc.subject.keywordPractical implementation.
dc.subject.ucmEconomía financiera
dc.subject.ucmEconometría (Economía)
dc.subject.unesco5302 Econometría
dc.titleWhat They Did Not Tell You About Algebraic (Non-)Existence, Mathematical (IR-)Regularity and (Non-)Asymptotic Properties of the Full BEKK Dynamic Conditional Covariance Model
dc.typetechnical report
dc.volume.number2019
dspace.entity.typePublication
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1918.pdf
Size:
354.27 KB
Format:
Adobe Portable Document Format