A New Edge Detection Method Based on Global Evaluation Using Supervised Classification Algorithms

dc.contributor.authorFlores Vidal, Pablo Arcadio
dc.contributor.authorVillarino, Guillermo
dc.contributor.authorGómez, Daniel
dc.contributor.authorMontero, Javier
dc.date.accessioned2023-06-17T12:32:15Z
dc.date.available2023-06-17T12:32:15Z
dc.date.issued2019
dc.descriptionP. A. Flores-Vidal, G. Villarino, D. Gómez, and J. Montero, “A New Edge Detection Method Based on Global Evaluation Using Supervised Classification Algorithms,” vol. 12, no. 1, pp. 367–378, 2019, doi: https://doi.org/10.2991/ijcis.2019.125905653.
dc.description.abstractTraditionally, the last step of edge detection algorithms, which is called scaling-evaluation, produces the final output classifying each pixel as edge or nonedge. This last step is usually done based on local evaluation methods. The local evaluation makes this classification based on measures obtained for every pixel. By contrast, in this work, we propose a global evaluation approach based on the idea of edge list to produce a solution that suits more with the human perception. In particular, we propose a new evaluation method that can be combined with any classical edge detection algorithm in an easy way to produce a novel edge detection algorithm. The new global evaluation method is divided in four steps: in first place we build the edge lists, that we have called edge segments. In second place we extract the characteristics associated to each segment: length, intensity, location, and so on. In the third step we learn the characteristics that make a segment good enough to become an edge. At the fourth step, we apply the classification task. In this work we have built the ground truth of edge list necessary for the supervised classification. Finally, we test the effectiveness of this algorithm against other classical algorithms based on local evaluation approach.
dc.description.departmentDepto. de Estadística e Investigación Operativa
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Economía, Industria y Competitividad (MINECO)
dc.description.sponsorshipComunidad de Madrid
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/63017
dc.identifier.citation[1] N.R. Pal, S.K. Pal, A review on image segmentation techniques, Pattern Recognition. 26(9) (1993), 1277–1294. [2] J. Canny, A computational approach to edge detection, IEEE Trans. Pattern Anal. Mach. Intell. 8(6) (1986), 679–698. [3] I. Sobel, History and Definition of the Sobel Operator, 2014. [4] L. Kitchen, A. Rosenfeld, Edge evaluation using local edge coherence, IEEE Trans. Syst. Man Cybern. 11(9) (1981), 597–605. [5] S. Venkatesh, P.L. Rosin, Dynamic threshold determination by local and global edge evaluation, Graphical Models Image Processing. 57(2) (1995), 146–160. [6] P.A. Flores-Vidal, D. Gómez, P. Olaso, C. Guada, A new edge detection approach based on fuzzy segments clustering, in: Advances in Fuzzy Logic and Technology, Springer, Cham, 2017, pp. 58–67. [7] P.A. Flores-Vidal, D. Gómez, J. Montero, G. Villarino, Classifying segments in edge detection problems, in 2017 12th International Conference on Intelligent Systems and Knowledge Engineering, ISKE, 2017, pp. 1–6. [8] D. Gómez, E. Zarrazola, J. Yáñez, J. Montero, A divide-and-link algorithm for hierarchical clustering in networks, Inf. Sci. 316 (2015), 308–328. [9] D. Gómez, J. Yáñez, C. Guada, J.T. Rodríguez, J. Montero, E. Zarrazola, Fuzzy image segmentation based upon hierarchical clustering. Know. Based Syst. 87 (2015), 26–37. [10] C. Guada, D. Gómez, J.T. Rodríguez, J. Yáñez, J. Montero, Classifying images analysis techniques from their output, Int. J. Comput. Int. Syst. 9(1) (2016), 43–68. [11] M. Basu, Gaussian-based edge-detection methods—a survey, IEEE Trans. Syst. Man. Cybern. C: Appl. Rev. 32(3) (2002), 252–260. [12] S. Morillas, V. Gregori, A. Hervas, Fuzzy peer groups for reducing mixed Gaussian impulse noise from color images, IEEE Trans. Image Process. 18(7) (2009), 1452–1466. [13] J. Lu, Q. Weng, A survey of image classification methods and techniques for improving classification performance, Int. J. Remote Sens. Appl. 28(5) (2007), 823–870. [14] A. Rosenfeld, M. Thurston, Edge and curve detection for visual scene analysis, IEEE Trans. Comput. 20 (1971), 562–569. [15] I.E. Abdou, W.K. Pratt, Quantitative design and evaluation of enhancement/thresholding edge detectors, Proc. IEEE. 67(5) (1979), 753–763. [16] M. Sonka, V. Hlavac, R. Boyle, Image Processing, Analysis, and Machine Vision, Champman and Hall Computing, Cambridge, 1993. [17] M. Nachtegael, D. Van der Weken, E. Kerre, W. Philips, Soft computing in image processing, in: A. Hassanien, M. Nachtegael, D. Van der Weken, H. Nobuhara, E. Kerre (Eds.), Studies in Fuzziness and Soft Computing, Springer, Warsaw, 2007. [18] J.R. Fram, E.S. Deutsch, On the quantitative evaluation of edge detection schemes and their comparison with human performance, IEEE Trans. Comput. 100(6) (1975), 616–628. [19] Y. Yitzhaky, E. Peli, A method for objective edge detection evaluation and detector parameter selection, IEEE Trans. Pattern Anal. Mach. Intell. 25(8) (2003), 1027–1033. [20] P. Arbeláez, M. Maire, C. Fowlkes, J. Malik, Contour detection and hierarchical image segmentation, IEEE Trans. Pattern Anal. Mach. Intell. 33(5) (2011), 898–916. [21] D. Martin, C. Fowlkes, D. Tal, J. Malik, A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics, Proc. IEEE Int. Conf. Comput. Vis. 2 (2001), 416–423. [22] I. Perfilieva, P. Hodáková, P. Hurtík, Differentiation by the F-transform and application to edge detection, Fuzzy Sets Syst. 288 (2016), 96–114. [23] F. Estrada, A. Jepson, Benchmarking image segmentation algorithms, Int. J. Comput. Vis. 85(2) (2009), 167–181. [24] L. Breiman, Classification and Regression Trees, Kluwer Academic Publishers, New York, 1984. [25] L. Breiman, Random Forests, Mach. Learn. 40 (2001), 5–32. [26] J.H. Friedman, Stochastic gradient boosting, Comput. Stat. Data Anal. 38(4) (2002), 367–378. [27] T. Chen, C. Guestrin, XGBoost: a scalable tree boosting system, in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Minings, 2016, pp. 785–794. [28] E.B. Goldstein, Sensación y percepción, Sexta ed., Thomson Editores, Spain, 2009. [29] J. Demsar, Statistical comparisons of classifiers over multiple datasets, J. Mach. Learn. Res. 7 (2006), 1–30. [30] S. García, F. Herrera, An extension on statistical comparisons of classifiers over multiple datasets for all pairwise comparisons, J. Mach. Learn. Res. 9 (2008), 2677–2694. [31] S. García, A. Fernandez, J. Luengo, F. Herrera, Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power, Inf. Sci. 180(10) (2010), 2044–2064. [32] F. Wilcoxon, Individual comparisons by ranking methods, Biometrics. 1 (1945), 80–83. [33] S. Holm, A simple sequentially rejective multiple test procedure, Scand. J. Stat. 6 (1979), 65–70. [34] P.A. Flores-Vidal, N. Martínez, D. Gómez, Post processing in edge detection based on segments, in Proceedings of the 13th International FLINS Conference on Data Science and Knowledge Engineering for Sensing Decision Support, World Scientific Proceedings Series on Computer Engineering and Information Science, Belfast, 2018, pp. 11. [35] M. Kuhn, Building predictive models in R using the caret package, J. Stat. Softw. 28(5) (2008), 1–26.
dc.identifier.doi10.2991/ijcis.2019.125905653
dc.identifier.issn1875-6883
dc.identifier.officialurlhttps://doi.org/10.2991/ijcis.2019.125905653
dc.identifier.relatedurlhttps://www.atlantis-press.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/12426
dc.issue.number1
dc.journal.titleInternational Journal of Computational Intelligence Systems
dc.language.isoeng
dc.page.final378
dc.page.initial367
dc.publisherAtlantis Press
dc.relation.projectIDTIN2015-66471-P
dc.relation.projectIDCASI-CAM-CM (S2013/ICE-2845)
dc.rightsAtribución-NoComercial 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by-nc/3.0/es/
dc.subject.cdu51:004
dc.subject.keywordImage processing
dc.subject.keywordEdge detection
dc.subject.keywordGlobal evaluation
dc.subject.keywordEdge segments Supervised classification
dc.subject.ucmCibernética matemática
dc.subject.unesco1207.03 Cibernética
dc.titleA New Edge Detection Method Based on Global Evaluation Using Supervised Classification Algorithms
dc.typejournal article
dc.volume.number12
dspace.entity.typePublication
relation.isAuthorOfPublication881ba82f-e783-4e7e-a1b6-dded36681497
relation.isAuthorOfPublication.latestForDiscovery881ba82f-e783-4e7e-a1b6-dded36681497
Download
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
flores2.pdf
Size:
5.26 MB
Format:
Adobe Portable Document Format
Collections