Indecomposable Lie algebras with nontrivial Levi decomposition cannot have filiform radical

Thumbnail Image
Full text at PDC
Publication Date
Campoamor-Stursberg, Rutwig
García Vergnolle, Lucía
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
Google Scholar
Research Projects
Organizational Units
Journal Issue
Let g = s n r be an indecomposable Lie algebra with nontrivial semisimple Levi subalgebra s and nontrivial solvable radical r. In this note it is proved that r cannot be isomorphic to a filiform nilpotent Lie algebra. The proof uses the fact that any Lie algebra g = snr with filiform radical would degenerate (even contract) to the Lie algebra snfn, where fn is the standard graded filiform Lie algebra of dimension n = dim r. This leads to a contradiction, since no such indecomposable algebra snr with r = fn exists
UCM subjects
Unesco subjects
J. M. Ancochea, On the rigidity of solvable Lie algebras, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 247 (1988), 403-445. J. M. Ancochea, R. Campoamor-Stursberg. Complete Lie algebras generated by the derivations of a proper ideal, Int. Math. J. 3 (2003), 711-717. R. Campoamor-Stursberg. On the invariants of some solvable rigid Lie algebras, J. Math. Phys. 43 (2003), 771-784. R. Campoamor-Stursberg. A graph theoretical determination of solvable complete Lie algebras,Linear Alg. Appl. 372 (2003), 155-168. R. Campoamor-Stursberg. Razreshimye algebry Li, zadannye proizvedeniem obrazuyushchikh i nekotorye ikh prilozheniya, Fund. Priklad. Mat., in press. G. Favre, Système des poids sur une algèbre de Lie nilpotente, Manuscripta Math. 9 (1973), 53-90. M. Goto. Note on a characterization of solvable Lie algebras, J. Sci. Hiroshima Univ. Ser. A-I 26 (1962), 1-2. [8] E. Inönü, E. P. Wigner. On the contraction of groups and their representations, Proc. Nat. Acad. Sci. U.S.A. 39 (1953), 510-524. G. B. Mubarakzyanov. O razreshimykh algebrakh Li, Izv. Vyssh. Ucheb. Zaved. Mat. 32 (1963), 114-123.