Por motivos de actualización y mejora, Docta Complutense, no estará operativa mañana día 28 de octubre, entre las 8.30 y las 11.30 horas de la mañana. Disculpen las molestias.

Indecomposable Lie algebras with nontrivial Levi decomposition cannot have filiform radical

Loading...
Thumbnail Image

Full text at PDC

Publication date

2006

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Hikari
Citations
Google Scholar

Citation

Abstract

Let g = s n r be an indecomposable Lie algebra with nontrivial semisimple Levi subalgebra s and nontrivial solvable radical r. In this note it is proved that r cannot be isomorphic to a filiform nilpotent Lie algebra. The proof uses the fact that any Lie algebra g = snr with filiform radical would degenerate (even contract) to the Lie algebra snfn, where fn is the standard graded filiform Lie algebra of dimension n = dim r. This leads to a contradiction, since no such indecomposable algebra snr with r = fn exists

Research Projects

Organizational Units

Journal Issue

Description

UCM subjects

Unesco subjects

Keywords

Collections