Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Modeling the Mechanics of Cell Division: Influence of Spontaneous Membrane Curvature, Surface Tension, and Osmotic Pressure

dc.contributor.authorBeltrán De Heredia Rodríguez, Elena
dc.contributor.authorAlmendro Vedia, Víctor Galileo
dc.contributor.authorMonroy, Francisco
dc.contributor.authorCao García, Francisco Javier
dc.date.accessioned2023-06-17T22:08:40Z
dc.date.available2023-06-17T22:08:40Z
dc.date.issued2017
dc.description© 2017 Frontiers Media SA. Financial support from FPU grant 13/02826 (Ministerio de Educacion, Cultura y Deporte, Spain), from MINECO (Spain) grants FIS2010-17440 and FIS2015-67765-R (to FJC), and FIS2009-1450-C02-01 and FIS2015-70339-C2-1-R (to FM) and from Comunidad de Madrid (Spain) grant S2009/MAT-1507 (to FM).
dc.description.abstractMany cell division processes have been conserved throughout evolution and are being revealed by studies on model organisms such as bacteria, yeasts, and protozoa. Cellular membrane constriction is one of these processes, observed almost universally during cell division. It happens similarly in all organisms through a mechanical pathway synchronized with the sequence of cytokinetic events in the cell interior. Arguably, such a mechanical process is mastered by the coordinated action of a constriction machinery fueled by biochemical energy in conjunction with the passive mechanics of the cellular membrane. Independently of the details of the constriction engine, the membrane component responds against deformation by minimizing the elastic energy at every constriction state following a pathway still unknown. In this paper, we address a theoretical study of the mechanics of membrane constriction in a simplified model that describes a homogeneous membrane vesicle in the regime where mechanical work due to osmotic pressure, surface tension, and bending energy are comparable. We develop a general method to find approximate analytical expressions for the main descriptors of a symmetrically constricted vesicle. Analytical solutions are obtained by combining a perturbative expansion for small deformations with a variational approach that was previously demonstrated valid at the reference state of an initially spherical vesicle at isotonic conditions. The analytic approximate results are compared with the exact solution obtained from numerical computations, getting a good agreement for all the computed quantities (energy, area, volume, constriction force). We analyze the effects of the spontaneous curvature, the surface tension and the osmotic pressure in these quantities, focusing especially on the constriction force. The more favorable conditions for vesicle constriction are determined, obtaining that smaller constriction forces are required for positive spontaneous curvatures, low or negative membrane tension and hypertonic media. Conditions for spontaneous constriction at a given constriction force are also determined. The implications of these results for biological cell division are discussed. This work contributes to a better quantitative understanding of the mechanical pathway of cellular division, and could assist the design of artificial divisomes in vesicle-based self-actuated microsystems obtained from synthetic biology approaches.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Economía y Competitividad (MINECO)
dc.description.sponsorshipMinisterio de Educación, Cultura y Deporte (MECD)
dc.description.sponsorshipComunidad de Madrid
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/44891
dc.identifier.doi10.3389/fphys.2017.00312
dc.identifier.issn1664-042X
dc.identifier.officialurlhttp://dx.doi.org/10.3389/fphys.2017.00312
dc.identifier.relatedurlhttps://www.frontiersin.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/18127
dc.journal.titleFrontiers in psychology
dc.language.isoeng
dc.publisherFrontiers Media SA
dc.relation.projectIDFIS2010-17440
dc.relation.projectIDFIS2015-67765-R
dc.relation.projectIDFIS2009-1450-C02-01
dc.relation.projectIDFIS2015-70339-C2-1-R
dc.relation.projectID13/02826
dc.relation.projectIDNOBIMAT (S2009/MAT-1507)
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/
dc.subject.cdu539.1
dc.subject.keywordHeavy chain gene
dc.subject.keywordEscherichia coli
dc.subject.keywordShape transformations
dc.subject.keywordIntramembrane domains
dc.subject.keywordCleavage furrow
dc.subject.keywordGiant vesicles
dc.subject.keywordZ- ring
dc.subject.keywordFtsz
dc.subject.keywordCytokinesis
dc.subject.keywordBacteria.
dc.subject.ucmFísica nuclear
dc.subject.unesco2207 Física Atómica y Nuclear
dc.titleModeling the Mechanics of Cell Division: Influence of Spontaneous Membrane Curvature, Surface Tension, and Osmotic Pressure
dc.typejournal article
dc.volume.number8
dspace.entity.typePublication
relation.isAuthorOfPublication6d423997-1ce4-455f-bc1f-bd777e4dd0fe
relation.isAuthorOfPublicationcac874a1-a328-4d98-a6a4-7a594f6573c7
relation.isAuthorOfPublication48a00bc8-8d51-4040-b1c1-34507f6c489b
relation.isAuthorOfPublication.latestForDiscovery48a00bc8-8d51-4040-b1c1-34507f6c489b

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Cao García FJ06libre.pdf
Size:
2.94 MB
Format:
Adobe Portable Document Format

Collections