Morse-Smale equations of non-saddle decompositions

dc.contributor.authorGiraldo, A.
dc.contributor.authorRodríguez Sanjurjo, José Manuel
dc.date.accessioned2023-06-20T09:40:25Z
dc.date.available2023-06-20T09:40:25Z
dc.date.issued2004
dc.descriptionInternational Conference on Topology and Its Applications, SEP 02-09, 2000, Ohrid, MACEDONIA
dc.description.abstractThe notion of a non-saddle decomposition of a compact ANR is introduced. This notion extends that of a an attractor-repeller pair. Some cohomological properties of non-saddle decompositions are studied. In particular, some inequalities in the spirit of the Morse-Smale equations for attractor-repeller pairs are obtained. These inequalities involve the ranks of the cohomological Conley index and also of a new cohomological invariant introduced here. The notion of a cyclic Morse decomposition is also introduced and it is proved that this kind of decomposition admits filtrations by non-saddle sets. Finally, these filtrations are used to obtain Morse-Smale equations that generalize those of a Morse decomposition.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/16820
dc.identifier.doi10.1016/j.topol.2003.08.018
dc.identifier.issn0166-8641
dc.identifier.officialurlhttp://www.sciencedirect.com/science/article/pii/S0166864103003353
dc.identifier.relatedurlhttp://www.sciencedirect.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/50157
dc.issue.number1
dc.journal.titleTopology and its Applications
dc.language.isoeng
dc.page.final80
dc.page.initial69
dc.publisherElsevier Science
dc.rights.accessRightsrestricted access
dc.subject.cdu514
dc.subject.cdu515.1
dc.subject.keywordDynamical system
dc.subject.keywordIsolated set
dc.subject.keywordNon-saddle set
dc.subject.keywordNon-saddle filtration
dc.subject.keywordCyclic Morse decomposition
dc.subject.keywordShape
dc.subject.ucmGeometría
dc.subject.ucmTopología
dc.subject.unesco1204 Geometría
dc.subject.unesco1210 Topología
dc.titleMorse-Smale equations of non-saddle decompositions
dc.typejournal article
dc.volume.number140
dcterms.referencesN.P. Bhatia, Attraction and nonsaddle sets in dynamical systems, J. Differential Equations 8 (1970) 229–249. N.P. Bhatia, G.P. Szego, Stability Theory of Dynamical Systems, in: Grundlehren Math. Wiss., vol. 161, Springer, Berlin, 1970. S.A. Bogatyi, V.I. Gutsu, On the structure of attracting compacta, Differentsialnye Uravneniya 25 (1989) 907–909 (in Russian). K. Borsuk, Theory of Shape, in: Monografie Mat., vol. 59, Polish Scientific Publishers, Warszawa, 1975. C.C. Conley, Isolated Invariant Sets and the Morse Index, in: CBMS Regional Conf. Ser. in Math., vol. 38, American Mathematical Society, Providence, RI, 1976. C.C. Conley, The gradient structure of a flow, Ergodic Theory Dynamical Systems 8* (1988) 11–26. C.C. Conley, R.W. Eastern, Isolated invariant sets and isolating blocks, Trans. Amer. Math. Soc. 158 (1971) 35–61. J.M. Cordier, T. Porter, Shape Theory. Categorical Methods of Approximation, in: Ellis Horwood Series: Mathematics and its Applications, Ellis Horwood, Chichester, 1989. J. Dydak, J. Segal, Shape Theory: An Introduction, in: Lecture Notes in Math., vol. 688, Springer, Berlin, 1978. A. Giraldo, J.M.R. Sanjurjo, On the global structure of invariant regions of flows with asymptotically stable attractors, Math. Z. 232 (1999) 739–746. A. Giraldo, M.A. Morón, F.R. Ruíz del Portal, J.M.R. Sanjurjo, Some duality properties of non-saddle sets, Topology Appl. 113 (2001) 51–59. M. Gobbino, Topological properties of attractors for dynamical systems, Topology 40 (2001) 279–298. B. Günther, J. Segal, Every attractor of a flow on a manifold has the shape of a finite polyhedron, Proc. Amer. Math. Soc. 119 (1993) 321–329. I. Ivanšic, R.B. Sher, A complement theorem for continua in a manifold, Topology Proc. 4 (1979) 437–452. I. Ivanšic, R.B. Sher, G.A. Venema, Complement theorems beyond the trivial range, Illinois J. Math. 25 (1981) 209–220. L. Kapitanski, I. Rodnianski, Shape and Morse theory of attractors, Comm. Pure Appl. Math. 53 (2000) 218–242. S. Mardešic, J. Segal, Shape Theory, North-Holland, Amsterdam, 1982. J.W. Robbin, D. Salamon, Dynamical systems, shape theory and the Conley index, Ergodic Theory Dynamical Systems 8* (1988) 375–393. J.M.R. Sanjurjo, Multihomotopy, Cˇ ech spaces of loops and shape groups, Proc. London Math. Soc. 69 (3)(1994) 330–344. J.E. West, Mapping Hilbert cube manifolds to ANR’s: A solution of a conjecture of Borsuk, Ann. Of Math. 106 (1977) 1–18.
dspace.entity.typePublication
relation.isAuthorOfPublicationf54f1d9d-37e9-4c15-9d97-e34a6343e575
relation.isAuthorOfPublication.latestForDiscoveryf54f1d9d-37e9-4c15-9d97-e34a6343e575

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
RodSanjurjo10.pdf
Size:
281.95 KB
Format:
Adobe Portable Document Format

Collections