Solid-solid phase transformations in a metastable stainless steel: microestructural control and mechanical properties

Thumbnail Image
Official URL
Full text at PDC
Publication Date
Journal Title
Journal ISSN
Volume Title
Universidad Complutense de Madrid
Google Scholar
Research Projects
Organizational Units
Journal Issue
In this thesis work the processing-microstructure-mechanical properties relationship has been studied in a cold-rolled semi-austenitic metastable stainless steel of composition (in wt. %): 12Cr-9Ni-4Mo-2Cu-1Ti-0.5Mn-0.4Al. Due to its good corrosion resistance, good ductility in the annealed state, high strength in martensitic state and its ability to precipitation harden, this material is especially suitable for complicated designs that still have high requirements on the strength of the final product. However, the complex thermo-mechanical behavior of this steel is difficult to understand and limits its applications. Therefore, and in view of its good properties, it is worth investing time in studying the phase transformations that the material may undergo during the thermo-mechanical processing and the microstructure-properties interlink. In this way, it is possible to gain insight about the parameters controlling the thermal and mechanical stability and to propose new processing routes that lead to the adequate final properties depending on the application. The pronounced chemical banding present in the cold-rolled as-received state has turned up to be a thorny and difficult-to-solve problem that influences the stability and the microstructure of the material. The combination of techniques such as transmission electron microscopy (TEM), electron probe microanalysis (EPMA), magnetization, micro-hardness Vickers and thermoelectric power (TEP) measurements have allow to perform a detailed characterization of the the α’→γ transformation under continuous heating (0.1, 1 and 10 ºC/s). It was found to occur in two steps due to the chemical banding, in a wide range of temperatures and through an Table of contents x interface-controlled mechanism for all heating rates. The isochronal heating allows the precise control of the microstructure and very fine submicrometer size (0.35-0.41 μm) dual (α’/γ) and austenitic microstructures can be obtained. The mechanical behavior of these microstructures was studied by tensile testing, magnetization measurements and TEM and it was found In consequence the mechanical properties can be varied from ultimate tensile strengths and elongations of about 1.20 GPa and 25 % to 2.20 GPa and 3 %, respectively. The main factors affecting the mechanical behavior in this steel are the mechanical stability of the austenite, the balance of austenite/martensite volume fractions, the presence of strengthening second-phase nano-particles and the chemical banding. Due to its metastability, the austenite is susceptible of transforming into martensite under applied uniaxial tensions (so-called TRIP effect), which results in outstanding work-hardening rates and enhanced mechanical properties. Finally, the ability of precipitation hardening of this steel was thoroughly investigated in the cold-rolled state for aging temperatures of 300-550 ºC and times up to 72 h. The hardening rate during aging has been characterized using hardness and TEP measurements; and nano-precipitates formed have been analyzed by TEM and HRTEM. A semi-empirical model has been used to estimate the activation energy of the process. The mechanical behavior of selected microstructures aged at 400, 450 and 500 ºC has been also characterized and discussed based on the nanometric size, the formation of austenite after long aging treatments and the coarsening of the precipitates.
Este trabajo de tesis se centra fundamentalmente en entender la relación procesado-microestructura-propiedades mecánicas en un acero inoxidable semi-autentico metaestable y endurecible por precipitación. El acero inoxidable estudiado presenta una composición 12Cr-9Ni-4Mo-2Cu-1Ti-0.5Mn-0.4Al y se fabrica por colada continua seguido de varias etapas de laminado en caliente y frío hasta que se obtienen planchas de 0.45 mm de espesor. Este material presenta muy buena ductilidad en estado recocido autentico (elongaciones de 0.20-0.30), y ultra-alta resistencia en su estado martensítico endurecido por precipitación (límite elástico de 1.50-1.80 GPa, resistencia máxima de hasta 2 GPa y dureza de 450-650 Hv10). Estas características le hacen atractivo para un gran número de aplicaciones que requieran resistencia a la corrosión, buena formabilidad y ultra-alta resistencia, como son algunos componentes de cabezales de maquinillas eléctricas de afeitar, instrumental quirúrgico o material deportivo. Sin embargo, su complejo comportamiento termo-mecánico limita en muchos casos su aplicación. Se ha observado que pequeñas variaciones de composición tienen una gran influencia en la estabilidad térmica y mecánica de la austenita. Las posibilidades que ofrece este acero y sus extraordinarias propiedades mecánicas justifican un estudio en profundidad para desentrañar su complejo comportamiento. Para ello, es necesario estudiar las transformaciones de fase que puede sufrir este material durante su procesado termo-mecánico, determinar los parámetros que afectan a su estabilidad térmica y mecánica y estudiar la relación microestructura-propiedades Resumens xii para así poder proponer nuevas rutas de procesado que permitan alcanzar las prestaciones finales adecuadas dependiendo de la aplicación...
Tesis inédita de la Universidad Complutense de Madrid, Facultad de Ciencias Físicas, Departamento de Física de Materiales, leída el 03-11-2015
Unesco subjects