Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Embedding strings in the unknot.

dc.contributor.authorMontesinos Amilibia, José María
dc.date.accessioned2023-06-20T18:48:11Z
dc.date.available2023-06-20T18:48:11Z
dc.date.issued2003
dc.descriptionDedicated with respect and friendship to Professor Yukio Matsumoto on his 60th birthday
dc.description.abstractIn this paper, the possibility of embedding a nontrivial string (R3,K) in the trivial knot (S3,U) is investigated. Uncountably many examples are given. The complementary space in S3 of the image of R3 under the embedding is a continuum. Some well-known snake-like continua appear as these residual spaces. The 2-fold coverings of R3 branched over the strings involved are studied. As a consequence, concrete descriptions of the p-adic solenoids are given, and it is shown that the Whitehead continuum is homeomorphic to Bing's snake-like continuum without end points.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/22294
dc.identifier.issn1340-5705
dc.identifier.officialurlhttp://journal.ms.u-tokyo.ac.jp/
dc.identifier.relatedurlhttp://journal.ms.u-tokyo.ac.jp/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/58661
dc.issue.number4
dc.journal.titleJournal of Mathematical Sciences. The University of Tokyo
dc.language.isoeng
dc.page.final660
dc.page.initial631
dc.publisherGraduate School of Mathematical Sciences
dc.relation.projectIDBMF-2002-04137-C02-01.
dc.rights.accessRightsrestricted access
dc.subject.cdu515.1
dc.subject.keywordstrings
dc.subject.keywordknots.
dc.subject.ucmTopología
dc.subject.unesco1210 Topología
dc.titleEmbedding strings in the unknot.
dc.typejournal article
dc.volume.number10
dcterms.referencesBing, R. H., Snake-like continua, Duke Math. J. 18 (1951), 653–663. Bing, R. H., A simple closed curve is the only homogeneous bounded plane continuum that contains an arc, Canad. J. Math. 12 (1960), 209–230. Brown, Morton, The monotone union of open n-cells is an open n-cell, Proc. Amer. Math. Soc. 12 (1961), 812–814. Brown, Morton, A proof of the generalized Schoenflies theorem, Bull. Amer. Math. Soc. 66 (1960), 74–76. Daverman, R. J., Decompositions of manifolds, Pure and Applied Mathematics, 124, Academic Press, Inc., Orlando, FL, 1986. Fox, Ralph H., A remarkable simple closed curve, Ann. of Math. (2) 50 (1949), 264–265. Haken, W., Some results on surfaces in 3-manifolds, 1968 Studies in Modern Topology pp. 39–98 Math. Assoc. Amer. (distributed by Prentice-Hall, Englewood Cliffs, N.J.) Kister, J. M. and D. R. McMillan, Jr., Locally euclidean factors of E4 which cannot be imbedded in E3, Ann. of Math. (2) 76 (1962), 541–546. McMillan, D. R., Jr., Some contractible open 3-manifolds, Trans. Amer. Math. Soc. 102 (1962) 373–382. Montesinos-Amilibia, J. M., Open 3-manifolds, wild subsets of S3 and branched coverings, Revista Matemática Complutense (to appear). cf. Morse, Marston, A reduction of the Schoenflies extension problem, Bull. Amer. Math. Soc. 66 (1960) 113–115.
dspace.entity.typePublication
relation.isAuthorOfPublication7097502e-a5b0-4b03-b547-bc67cda16ae2
relation.isAuthorOfPublication.latestForDiscovery7097502e-a5b0-4b03-b547-bc67cda16ae2

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
montesinos66.pdf
Size:
1.31 MB
Format:
Adobe Portable Document Format

Collections