Matching moments for a closer approximation of the weighted (h, phi)-divergence test statistics in goodness-of-fit for finite samples
dc.contributor.author | Landaburu Jiménez, María Elena | |
dc.contributor.author | Pardo Llorente, Leandro | |
dc.date.accessioned | 2023-06-20T09:39:02Z | |
dc.date.available | 2023-06-20T09:39:02Z | |
dc.date.issued | 2005 | |
dc.description.abstract | The distributional properties of the weighted (h, phi)-divergence test statistics introduced in Landaburu and Pardo (2000) rely on large sample sizes for their validity. In this paper the accuracy of applying asymptotic results in cases where the sample size can not be assumed large is explored. In order to do this we compare the two asymptotic moments of the weighted (h, phi)-divergence test statistics with small-sample expressions for those moments. (C) 2004 The Franklin Institute. Published by Elsevier Ltd. All rights reserved | |
dc.description.department | Depto. de Estadística e Investigación Operativa | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | DGES | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/16481 | |
dc.identifier.doi | 10.1016/j.jfranklin.2004.08.007 | |
dc.identifier.issn | 0016-0032 | |
dc.identifier.officialurl | http://www.sciencedirect.com/science/article/pii/S0016003204000870 | |
dc.identifier.relatedurl | http://www.sciencedirect.com/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/50112 | |
dc.issue.number | 1 | |
dc.journal.title | Journal of The Franklin Institute | |
dc.language.iso | eng | |
dc.page.final | 129 | |
dc.page.initial | 115 | |
dc.publisher | Elsevier | |
dc.relation.projectID | PB2003-00892 | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 517.15 | |
dc.subject.keyword | Weights | |
dc.subject.keyword | Asymptotic distributions | |
dc.subject.keyword | ðh | |
dc.subject.keyword | jÞ-divergences | |
dc.subject.keyword | Power | |
dc.subject.keyword | Weighted ðh | |
dc.subject.keyword | jÞ-divergence test statistics | |
dc.subject.ucm | Probabilidades (Matemáticas) | |
dc.title | Matching moments for a closer approximation of the weighted (h, phi)-divergence test statistics in goodness-of-fit for finite samples | |
dc.type | journal article | |
dc.volume.number | 342 | |
dcterms.references | E. Landaburu, L. Pardo, Goodness-of-fit tests with weights in the classes based on ðh;fÞ-divergences, Kybernetika 36 (5) (2000) 589–602. M. Belis, S. Guiasu, A quantitative–qualitative measures of information in cybernetic systems, IEEE Trans. Inf. Theory 4 (1968) 593–594. S. Guiasu, Weighted entropy, Rep. Math. Phys. 2 (1971) 165–174. S. Guiasu, Grouping data by using the weighted entropy, J. Statist. Plann. Inference 15 (1986) 63–69. E. Landaburu, L. Pardo, Minimum ðh;jÞ-divergence estimators with weights, Appl. Math. Comput. 140 (2003) 15–28. G. Longo, Quantitative and qualitative measure of information, Springer, New York, 1977. H.C. Taneja, R.K. Tuteja, Characterization of a qualitative–quantitative measures of relative Information, Inform. Sci. 33 (1984) 1–6. T.R.C. Read, N. Cressie, Goodness-of-Fit Statistics of Discrete Multivariate Data, Springer, New York, 1988. N. Cressie, T.R.C. Read, Multinomial goodness-of-fit tests, J. Roy. Statist. Soc. Ser. B 46 (1984) 440–464. M.L. Mene´ndez, D. Morales, L. Pardo, I. Vajda, About divergence-based goodness-of-fit tests in the Dirichlet-Multinomial Model, Comm. Statist. Theory Methods 25 (1996) 1119–1133. K. Zografos, K. Ferentinos, T. Papaioannou, j-divergence statistics: sampling properties and multinomial goodness of fit and divergence tests, Comm. Statist. Theory Methods 19 (5) (1990) 1785–1802. A. Renyi, On measures of entropy and information, in: Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, 1961, pp. 547–561. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 0cf1bfef-b105-422e-9f20-80ca13261ed7 | |
relation.isAuthorOfPublication | a6409cba-03ce-4c3b-af08-e673b7b2bf58 | |
relation.isAuthorOfPublication.latestForDiscovery | 0cf1bfef-b105-422e-9f20-80ca13261ed7 |
Download
Original bundle
1 - 1 of 1