Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA Disculpen las molestias.
 

A machine learning approach to site groundwater contamination monitoring wells

dc.contributor.authorGómez-Escalonilla Canales, Víctor
dc.contributor.authorMontero González, Esperanza
dc.contributor.authorDíaz Alcaide, Silvia
dc.contributor.authorMartín Loeches, Miguel Martín
dc.contributor.authorRodríguez del Rosario, M.
dc.contributor.authorMartínez Santos, Pedro
dc.date.accessioned2025-04-04T18:30:39Z
dc.date.available2025-04-04T18:30:39Z
dc.date.issued2024-11-07
dc.description.abstractEffective monitoring of groundwater contamination is crucial to protect human livelihoods and ecosystems. This paper presents a machine learning-based approach to improve groundwater monitoring networks by providing predictions of groundwater contamination in space. The method is demonstrated through a practical application in Central Spain, where nitrate was used as a proxy for groundwater contamination. Predictive mapping identifies the spatial markers for groundwater contamination based on twenty-four predictor variables and a dataset of 213 existing monitoring boreholes. Tree-based algorithms found meaningful associations between the explanatory variables and known nitrate concentrations. Comparing the outcomes of the algorithms with the areas officially delineated as vulnerable to nitrate suggests that machine learning algorithms are able to predict groundwater contamination. The extra trees algorithm outperformed decision trees, random forest, gradient boosting, and AdaBoost classifiers, with an area under the curve score in excess of 0.88. Major predictors for groundwater contamination were depth to the water table, lithology, distance to rivers, and distance to livestock farms. Predictive mapping suggests that there are unmonitored regions to the northeast and to the southwest of Madrid’s metropolitan area that present similar markers to monitored regions known to be contaminated. These unmonitored areas should be prioritized in future attempts to improve the network. From a research perspective, the main conclusion of this work is that machine learning techniques can be used as a technique to automate the siting of monitoring boreholes. Practical applications should nevertheless be overseen by an expert eye to guarantee the quality of the outcomes.
dc.description.departmentDepto. de Geodinámica, Estratigrafía y Paleontología
dc.description.facultyFac. de Ciencias Geológicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Innovación
dc.description.sponsorshipEuropean Commission
dc.description.statuspub
dc.identifier.citationGómez-Escalonilla, V., Montero-González, E., Díaz-Alcaide, S., Martín-Loeches, M., Del Rosario, M. R., & Martínez-Santos, P. (2024). A machine learning approach to site groundwater contamination monitoring wells. Applied Water Science, 14(12), 250. https://doi.org/10.1007/s13201-024-02320-1
dc.identifier.doi10.1007/s13201-024-02320-1
dc.identifier.essn2190-5495
dc.identifier.issn2190-5487
dc.identifier.officialurlhttps://doi.org/10.1007/s13201-024-02320-1
dc.identifier.relatedurlhttps://link.springer.com/article/10.1007/s13201-024-02320-1
dc.identifier.urihttps://hdl.handle.net/20.500.14352/119301
dc.issue.number250
dc.journal.titleApplied Water Science
dc.language.isoeng
dc.publisherSpringer
dc.relation.projectIDPID2021-124018OB-I00
dc.relation.projectID101059372
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.cdu556.3(460.27)
dc.subject.keywordAquifer
dc.subject.keywordContamination
dc.subject.keywordArtifcial intelligence
dc.subject.keywordMachine learning
dc.subject.keywordMLMapper
dc.subject.keywordExtra trees algorithm
dc.subject.keywordGIS
dc.subject.ucmHidrología
dc.subject.unesco2506.05 Hidrogeología
dc.titleA machine learning approach to site groundwater contamination monitoring wells
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number14
dspace.entity.typePublication
relation.isAuthorOfPublication5046d68f-5c35-4421-8f9c-1c4c7237d801
relation.isAuthorOfPublicatione2928ae4-1df3-472d-a525-27c92d5ffddc
relation.isAuthorOfPublication15b553b7-1c3c-42b4-b05a-48f39552ad83
relation.isAuthorOfPublicationfe2f5bb2-2318-4316-b695-cfeff52d3e6e
relation.isAuthorOfPublication.latestForDiscovery5046d68f-5c35-4421-8f9c-1c4c7237d801

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
A machine learning approach to site groundwater.pdf
Size:
4.45 MB
Format:
Adobe Portable Document Format

Collections