Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Sums of squares of linear forms

dc.contributor.authorFernando Galván, José Francisco
dc.contributor.authorRuiz Sancho, Jesús María
dc.contributor.authorScheiderer, Claus
dc.date.accessioned2023-06-20T09:33:32Z
dc.date.available2023-06-20T09:33:32Z
dc.date.issued2006
dc.description.abstractLet k be a real field. We show that every non-negative homogeneous quadratic polynomial f (x(1),..., x(n)) with coefficients in the polynomial ring k[t] is a sum of 2n center dot tau(k) squares of linear forms, where tau(k) is the supremum of the levels of the finite non-real field extensions of k. From this result we deduce bounds for the Pythagoras numbers of affine curves over fields, and of excellent two-dimensional local henselian rings.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/15130
dc.identifier.issn1073-2780
dc.identifier.officialurlhttp://mrlonline.org/mrl/2006-013-006/2006-013-006-009.pdf
dc.identifier.relatedurlhttp://www.intlpress.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/49900
dc.issue.number5-6
dc.journal.titleMathematical Research Letters
dc.language.isospa
dc.page.final956
dc.page.initial947
dc.publisherInternational Press
dc.rights.accessRightsopen access
dc.subject.cdu511
dc.subject.cdu512.7
dc.subject.keywordSums of squares
dc.subject.keywordquadratic forms
dc.subject.keywordlevel
dc.subject.keywordPythagoras numbers
dc.subject.keywordlocal henselian rings.
dc.subject.ucmTeoría de números
dc.subject.ucmGeometria algebraica
dc.subject.unesco1205 Teoría de Números
dc.subject.unesco1201.01 Geometría Algebraica
dc.titleSums of squares of linear forms
dc.typejournal article
dc.volume.number13
dcterms.referencesC. Andradas and J.M. Ruiz, On local uniformization of orderings, Contemp. Math. 155 (1994) 19–46. R. Baeza, D. Leep, M. O’Ryan, and J. P. Prieto, Sums of squares of linear forms, Math. Z. 193 (1986) 297–306. N. Bourbaki, Alg`ebre Commutative, Chapitres 8 et 9. Masson, Paris, 1983. M.D. Choi, Z.D. Dai, T.Y. Lam, and B. Reznick, The Pythagoras number of some affine algebras and local algebras, J. Reine Angew. Math. 336 (1982) 45–82. M.D. Choi, T.Y. Lam, and B. Reznick, Real zeros of positive semidefinite forms. I, Math. Z. 171 (1980) 1–26. D.ˇZ. Djokovi´c, Hermitian matrices over polynomial rings, J. Algebra 43 (1976) 359–374. J.F. Fernando, On the Pythagoras numbers of real analytic rings, J. Algebra 243 (2001) 321–338. Sums of squares in real analytic rings, Trans. Am. Math. Soc. 354 (2002) 1909– 1919. J.F. Fernando, J.M. Ruiz, and C. Scheiderer, Sums of squares in real rings, Trans. Am. Math. Soc. 356 (2004) 2663–2684. V.A. Jakubovi´c, Factorization of symmetric matrix polynomials (Russian), Dokl. Akad. Nauk SSSR 194 (1970) 532–535. M. Knebusch, Grothendieck- und Wittringe von nichtausgearteten symmetrischen Bilinearformen, S.-B. Heidelberger Akad. Wiss. Math.-Natur. Kl. 1969/70 93–157. H. Kurke, G. Pfister, D. Popescu, M. Roczen, and T. Mostowski, Die Approximationseigenschaft lokaler Ringe, Lecture Notes in Mathematics, Vol. 634. Springer-Verlag, Berlin-New York, 1978. T.Y. Lam, Introduction to quadratic forms over fields, Graduate Studies in Mathematics, 67. American Mathematical Society, Providence, RI, 2005. M. Rosenblum and J. Rovnyak, The factorization problem for nonnegative operator valued functions, Bull. Am. Math. Soc. 77 (1971) 287–318. W. Scharlau, Quadratic and Hermitian forms. Grundlehren der mathematischen Wissenschaften 270,Springer,Berlin,1985. C. Scheiderer, On sums of squares in local rings. J. Reine Angew. Math. 540 (2001) 205– 227.
dspace.entity.typePublication
relation.isAuthorOfPublication499732d5-c130-4ea6-8541-c4ec934da408
relation.isAuthorOfPublicationf12f8d97-65c7-46aa-ad47-2b7099b37aa4
relation.isAuthorOfPublication.latestForDiscovery499732d5-c130-4ea6-8541-c4ec934da408

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
SUMS OF SQUARES OF LINEAR FORMS.pdf
Size:
133.01 KB
Format:
Adobe Portable Document Format

Collections