Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Influence of cratonic lithosphere on the formation and evolution of flat slabs: Insights from 3-D time-dependent modeling.

dc.contributor.authorTaramón, Jorge M.
dc.contributor.authorRodríguez González, Juan
dc.contributor.authorNegredo Moreno, Ana María
dc.contributor.authorBillen, Magali I.
dc.date.accessioned2023-06-18T06:51:49Z
dc.date.available2023-06-18T06:51:49Z
dc.date.issued2015-09
dc.description© John Wiley & Sons, Inc. The data displayed in this paper were computed with the free software CitcomS (http://www.geodynamics. org/cig/software/citcoms). Model results were postprocessed and represented (Figures 2, 3, 5–9, S1–S6, and Movies S2, S3, S5, and S6) using commercial code Matlab (www. mathworks.com/products/matlab/). Figure 4 and Movies S1 and S4 were produced using public domain software ParaView (http://www. paraview.org). This work was supported by Spanish Ministry of Economy and Competitiveness projects CGL2012-37222 and CGL2014- 58821-C2-1-R. M.I. Billen acknowledges support from NSF grants 6877321 and 0748818. We thank the Editor and Leland O’Driscoll, Maxim Ballmer and an anonymous reviewer for their thoughtful and constructive comments.
dc.description.abstractSeveral mechanisms have been suggested for the formation of flat slabs including buoyant features on the subducting plate, trenchward motion and thermal or cratonic structure of the overriding plate. Analysis of episodes of flat subduction indicate that not all flat slabs can be attributed to only one of these mechanisms and it is likely that multiple mechanisms work together to create the necessary conditions for flat slab subduction. In this study we examine the role of localized regions of cratonic lithosphere in the overriding plate in the formation and evolution of flat slabs. We explicitly build on previous models, by using time-dependent simulations with three-dimensional variation in overriding plate structure. We find that there are two modes of flat subduction: permanent underplating occurs when the slab is more buoyant (shorter or younger), while transient flattening occurs when there is more negative buoyancy (longer or older slabs). Our models show how regions of the slab adjacent to the subcratonic flat portion continue to pull the slab into the mantle leading to highly contorted slab shapes with apparent slab gaps beneath the craton. These results show how the interpretation of seismic images of subduction zones can be complicated by the occurrence of either permanent or transient flattening of the slab, and how the signature of a recent flat slab episode may persist as the slab resumes normal subduction. Our models suggest that permanent underplating of slabs may preferentially occur below thick and cold lithosphere providing a built-in mechanism for regeneration of cratons.
dc.description.departmentDepto. de Física de la Tierra y Astrofísica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Economía y Competitividad (MINECO) España
dc.description.sponsorshipNational Science Foundation (NSF), EE.UU.
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/37276
dc.identifier.doi10.1002/2015GC005940
dc.identifier.issn1525-2027
dc.identifier.officialurlhttp://dx.doi.org/10.1002/2015GC005940
dc.identifier.relatedurlhttp://www.researchgate.com
dc.identifier.relatedurlhttp://onlinelibrary.wiley.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/24435
dc.issue.number9
dc.journal.titleGeochemistry, geophysics, geosystems
dc.language.isoeng
dc.page.final2948
dc.page.initial2933
dc.publisherAmerican Geophysical Union
dc.relation.projectIDCGL2012-37222
dc.relation.projectIDCGL2014- 58821-C2-1-R
dc.relation.projectID6877321
dc.relation.projectID0748818
dc.rights.accessRightsopen access
dc.subject.cdu550.3
dc.subject.keywordOceanic plateau subduction
dc.subject.keywordWestern North-America
dc.subject.keywordOverriding plate
dc.subject.keywordMantle convection
dc.subject.keywordTrench migration
dc.subject.keywordLaramide orogeny
dc.subject.keywordTransition-zone
dc.subject.keywordThermal-model
dc.subject.keywordFarallon slab.
dc.subject.ucmGeofísica
dc.subject.ucmMeteorología (Física)
dc.subject.unesco2507 Geofísica
dc.titleInfluence of cratonic lithosphere on the formation and evolution of flat slabs: Insights from 3-D time-dependent modeling.
dc.typejournal article
dc.volume.number16
dcterms.referencesAnderson, M. L., P. Alvarado, G. Zandt, and S. Beck (2007), Geometry and brittle deformation of the subducting Nazca Plate, Central Chile and Argentina, Geophys. J. Int., 171(1), 419–434. Antonijevic, S. K., L. S. Wagner, A. Kumar, S. L. Beck, M. D. Long, G. Zandt, H. Tavera, and C. Condori (2015), The role of ridges in the formation and longevity of flat slabs, Nature, 524, 212–215, doi:10.1038/nature14648. Arredondo, K., and M. Billen (2014), Dynamic linkages between the transition zone & surface plate motion in 2D models of subduction, Abstract DI33A-2216 presented at 2014 Fall Meeting, AGU, San Francisco, Calif. Arrial, P.-A., and M. I. Billen (2013), Influence of geometry and eclogitization on oceanic plateau subduction, Earth Planet. Sci. Lett., 363, 34–43. Artemieva, I. M. (2006), Global 18318 thermal model TC1 for the continental lithosphere: Implications for lithosphere secular evolution, Tectonophysics, 416(1-4), 245–277. Betts, P. G., L. Moresi, M. S. Miller, and D. Willis (2015), Geodynamics of oceanic plateau and plume head accretion and their role in Phanerozoic orogenic systems of China, Geosci. Frontiers, 6(1), 49–59. Billen, M. I., and G. Hirth (2007), Rheologic controls on slab dynamics, Geochem. Geophys. Geosyst., 8, Q08012, doi:10.1029/2007GC001597. Blackwell, D., and M. Richards (2004), Geothermal Map of North America, AAPG Map, scale 1:6,500,000, Product Code 423. Bruns, T. R. (1985), Tectonics of the Yakutat block, an allochthonous terrane in the northern Gulf of Alaska, Rep. 85-13, 112 pp., U.S. Geol. Surv., Menlo Park, Calif. Canil, D. (2008), Canada’s craton: A bottoms-up view, GSA Today, 18(6), 4–10. Capitanio, F. A., D. R. Stegman, L. N. Moresi, and W. Sharples (2010), Upper plate controls on deep subduction, trench migrations and deformations at convergent margins, Tectonophysics, 483(1-2), 80–92. Cizkova, H., J. van Hunen, A. P. van den Berg, and N. J. Vlaar (2002), The influence of rheological weakening and yield stress on the interaction of slabs with the 670 km discontinuity, Earth Planet. Sci. Lett., 193(3-4), 447–457. Cloos, M. (1993), Lithospheric buoyancy and collisional orogenesis: Subduction of oceanic plateaus, continental margins, island arcs, spreading ridges, and seamounts, Geol. Soc. Am. Bull., 105(6), 715–737. Cross, T. A., and R. H. Pilger (1982), Controls of subduction geometry, location of magmatic arcs, and tectonics of arc and back-arc regions, Geol. Soc. Am. Bull., 93, 545–562. Currie, C. A., and C. Beaumont (2011), Are diamond-bearing Cretaceous kimberlites related to low-angle subduction beneath western North America?, Earth Planet. Sci. Lett., 303(1-2), 59–70. Darold, A., and E. Humphreys (2013), Upper mantle seismic structure beneath the Pacific Northwest: A plume-triggered delamination origin for the Columbia River flood basalt eruptions, Earth Planet. Sci. Lett., 365, 232–242. Espurt, E., F. Funiciello, J. Martinod, B. Guillaume, V. Regard, C. Faccenna, and S. Brusset (2008), Flat subduction dynamics and deformation of the South American plate: Insights from analog modeling, Tectonics, 27, TC3011, doi:10.1029/2007TC002175. Fullea, J., S. Lebedev, M. R. Agius, A. G. Jones, and J. C. Afonso (2012), Lithospheric structure in the Baikal–central Mongolia region from integrated geophysical-petrological inversion of surface-wave data and topographic elevation, Geochem. Geophys. Geosyst., 13, Q0AK09, doi:10.1029/2012GC004138. Gao, H., E. D. Humphreys, H. Yao, and R. D. van der Hilst (2011), Crust and lithosphere structure of the northwestern U.S. with ambient noise tomography: Terrane accretion and Cascade arc development, Earth Planet. Sci. Lett., 304(1-2), 202–211. Garel, F., S. Goes, D. Davies, J. H. Davies, S. Kramer, and C. Wilson (2014), Interaction of subducted slabs with the mantle transition-zone: A regime diagram from 2-D thermo-mechanical models with a mobile trench and an overriding plate, Geochem. Geophys. Geosyst., 15, 1739–1765, doi:10.1002/2014GC005257. Gerya, T. V., D. Fossati, C. Cantieni, and D. Seward (2009), Dynamic effects of aseismic ridge subduction: Numerical modelling, Eur. J. Mineral., 21(3), 649–661. Gurnis, M., C. Hall, and L. Lavier (2004), Evolving force balance during incipient subduction, Geochem. Geophys. Geosyst., 5, Q07001, doi: 10.1029/2003GC000681. Gutscher, M.-A., J. L. Olivet, D. Aslanian, J.-P. Eissen, and R. C. Maury (1999), The "lost Inca Plateau": Cause of flat subduction beneath Peru?, Earth Planet. Sci. Lett., 171, 335–341. Gutscher, M.-A., W. Spakman, H. Bijwaard, and E. R. Engdahl (2000), Geodynamics of flat subduction: Seismicity and tomographic constraints from the Andean margin, Tectonics, 19(5), 814–833. Hager, B. H. (1984), Subducted slabs and the geoid: Constraints on mantle rheology and flow, J. Geophys. Res., 86(B7), 6003–6015. Holt, A. F., T. W. Becker, and B. A. Buffett (2015), Trench migration and overriding plate stress in dynamic subduction models, Geophys. J. Int., 201(1), 172–192. Humphreys, E. D. (1995), Post-Laramide removal of the Farallon slab, western United States, Geology, 23(11), 987–990. Jadamec, M. A., and M. I. Billen (2010), Reconciling surface plate motions with rapid three-dimensional mantle flow around a slab edge, Nature, 465, 338–341. Johnson, C. M. (1991), Large-scale crust formation and lithosphere modification beneath Middle to Late Cenozoic calderas and volcanic fields, western North America, J. Geophys. Res., 96(B8), 13,485–13,507. Jones, C. H., G. L. Farmer, B. Sageman, and S. Zhong (2011), Hydrodynamic mechanism for the Laramide orogeny, Geosphere, 7, 183–201. Lee, C.-T. A., P. Luffi, and E. J. Chin (2011), Building and destroying continental mantle, Annu. Rev. Earth Planet. Sci., 39, 59–90. Liu, L., and D. R. Stegman (2011), Segmentation of the Farallon slab, Earth Planet. Sci. Lett., 311(1-2), 1–10. Liu, L., M. Gurnis, M. Seton, J. Saleeby, R. D. Muller, and J. M. Jackson (2010), The role of oceanic plateau subduction in the Laramide orogeny, Nat. Geosci., 3(5), 353–357. Manea, V. C., M. Pérez-Gussinyé, and M. Manea (2012), Chilean flat slab subduction controlled by overriding plate thickness and trench rollback, Geology, 40(1), 35–38. Martinod, J., F. Funiciello, C. Faccenna, S. Labanieh, and V. Regard (2005), Dynamical effects of subducting ridges: Insights from 3-D laboratory models, Geophys. J. Int., 163(3), 1137–1150. Meyer, C., and W. Schellart (2013), Three-dimensional dynamic models of subducting plate-overriding plate-upper mantle interaction, J. Geophys. Res. Solid Earth, 118, 775–790, doi:10.1002/jgrb.50078. O’Driscoll, L. J., E. D. Humphreys, and F. Saucier (2009), Subduction adjacent to deep continental roots: Enhanced negative pressure in the mantle wedge, mountain building and continental motion, Earth Planet. Sci. Lett., 280(1-4), 61–70. O’Driscoll, L. J., M. A. Richards, and E. D. Humphreys (2012), Nazca–South America interactions and the late Eocene–late Oligocene flat-slab episode in the central Andes, Tectonics, 31, TC2013, doi:10.1029/2011TC003036. Pardo, M., and G. Suarez (1995), Shape of the subducted Rivera and Cocos plates in southern Mexico: Seismic and tectonic implications, J. Geophys. Res., 100(B7), 12,357–12,373. Parker, R. L., and D. W. Oldenburg (1973), Thermal model of ocean ridges, Nature, 242, 137–139. Pérez-Gussinyé, M., A. R. Lowry, J. Phipps Morgan, and A. Tassara (2008), Effective elastic thickness variations along the Andean margin and their relationship to subduction geometry, Geochem. Geophys. Geosyst., 9, Q02003, doi:10.1029/2007GC001786. Ritsema, J., H. J. van Heijst, and J. H. Woodhouse (2004), Global transition zone tomography, J. Geophys. Res. Solid Earth, 109, B02302, doi: 10.1029/2003JB002610. Roda, M., A. M. Marotta, and M. I. Spalla (2011), The effects of the overriding plate thermal state on the slab dip in an ocean-continent subduction system, C. R. Geosci., 343(5), 323–330. Rodríguez-González, J., A. M. Negredo, and M. I. Billen (2012), The role of the overriding plate thermal state on slab dip variability and on the occurrence of flat subduction, Geochem. Geophys. Geosyst., 13, Q01002, doi:10.1029/2011GC003859. Rodríguez-González, J., M. I. Billen, and A. M. Negredo (2014), Non-steady-state subduction and trench parallel flow induced by overriding plate structure, Earth Planet. Sci. Lett, 401, 227–235. Saleeby, J. (2003), Segmentation of the Laramide slab—Evidence from the southern Sierra Nevada region, Geol. Soc. Am. Bull, 115, 655– 668. Schellart, W. P., J. Freeman, D. R. Stegman, L. Moresi, and D. May (2007), Evolution and diversity of subduction zones controlled by slab width, Nature, 446, 308–311. Schellart, W. P., D. R. Stegman, and J. Freeman (2008), Global trench migration velocities and slab migration induced upper mantle volume fluxes: Constraints to find an Earth reference frame based on minimizing viscous dissipation, Earth Sci. Rev., 88, 118–144. Schellart, W. P., D. R. Stegman, R. J. Farrington, J. Freeman, and L. Moresi (2010), Cenozoic tectonics of western North America controlled by evolving width of Farallon slab, Science, 329, 316–319. Schmandt, B., and E. Humphreys (2011), Seismically imaged relict slab from the 55 Ma Siletzia accretion to the northwest United States, Geology, 39(2), 175–178. Shirey, S. B., P. Cartigny, D. J. Frost, S. Keshav, F. Nestola, P. Nimis, D. G. Pearson, N. V. Sobolev, and M. J. Walter (2013), Diamonds and the geology of mantle carbon, Rev. Mineral. Geochem., 75(1), 355–421. Sigloch, K. (2011), Mantle provinces under North America from multifrequency P wave tomography, Geochem. Geophys. Geosyst., 12, Q02W08, doi:10.1029/2010GC003421. Simon, N. S. C., R. W. Carlson, D. G. Pearson, and G. R. Davies (2007), The origin and evolution of the Kaapvaal cratonic lithospheric mantle, J. Petrol., 48(3), 589–625. Skinner, S. M., and R. W. Clayton (2013), The lack of correlation between flat slabs and bathymetric impactors in South America, Earth Planet. Sci. Lett., 371–372, 1–5. Stevenson, D. J., and J. S. Turner (1977), Angle of subduction, Nature, 270, 334–336. Tan, E., E. Choi, P. Thoutireddy, M. Gurnis, and M. Aivazis (2006), GeoFramework: Coupling multiple models of mantle convection within a computational framework, Geochem. Geophys. Geosyst., 7, Q06001, doi:10.1029/2005GC001155. Tassara, A., and A. Echaurren (2012), Anatomy of the Andean subduction zone: Three-dimensional density model upgraded and compared against global-scale models, Geophys. J. Int., 189(1), 161–168. Tassara, A., H.-J. G€otze, S. Schmidt, and R. Hackney (2006), Three-dimensional density model of the Nazca plate and the Andean continental margin, J. Geophys. Res., 111, B09404, doi:10.1029/2005JB003976. Turcotte, D. L., and J. Schubert (2002), Geodynamics, 2 ed., Cambridge Univ. Press, Cambridge, U. K. van den Berg, A. P., P. E. van Keken, and D. A. Yuen (1993), The effects of a composite non-Newtonian and Newtonian rheology on mantle convection, Geophys. J. Int., 115, 62–78. van der Lee, S., and G. Nolet (1997), Seismic image of the subducted trailing fragments of the Farallon plate, Nature, 386, 266–269. van Hunen, J., A. P. van den Berg, and N. J. Vlaar (2000), A thermo-mechanical model of horizontal subduction below an overriding plate, Earth Planet. Sci. Lett., 182(2), 157–169. van Hunen, J., A. P. van den Berg, and N. J. Vlaar (2002), On the role of subducting oceanic plateaus in the development of shallow flat subduction, Tectonophysics, 352(3-4), 317–333. Vlaar, N. J. (1983), Thermal anomalies and magmatism due to lithospheric doubling and shifting, Earth Planet. Sci. Lett., 65(2), 322–330. Vogt, P. R. (1973), Subduction and aseismic ridges, Nature, 241(5386), 189–191. Wells, R., D. Bukry, R. Friedman, D. Pyle, R. Duncan, P. Haeussler, and J. Wooden (2014), Geologic history of Siletzia, a large igneous province in the Oregon and Washington Coast Range: Correlation to the geomagnetic polarity time scale and implications for a long-lived Yellowstone hotspot, Geosphere, 10(4), 692–719. Yuan, H., and B. Romanowicz (2010), Lithospheric layering in the North American craton, Nature, 466, 1063–1068. Zhong, S., M. T. Zuber, L. Moresi, and M. Gurnis (2000), The role of temperature-dependent viscosity and surface plates in spherical shell models of mantle convection, J. Geophys. Res., 105(B5), 11,063–11,082.
dspace.entity.typePublication
relation.isAuthorOfPublication7006e3ef-da02-45d6-a74f-0ee17f18e672
relation.isAuthorOfPublication.latestForDiscovery7006e3ef-da02-45d6-a74f-0ee17f18e672

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
NegredoMoreno 01 libre.pdf
Size:
5.06 MB
Format:
Adobe Portable Document Format

Collections