An exploratory canonical analysis approach for multinomial populations based on the phi-divergence measure
dc.contributor.author | Pardo Llorente, Julio Ángel | |
dc.contributor.author | Pardo Llorente, Leandro | |
dc.contributor.author | Pardo Llorente, María del Carmen | |
dc.contributor.author | Zografos, Konstantinos | |
dc.date.accessioned | 2023-06-20T09:44:27Z | |
dc.date.available | 2023-06-20T09:44:27Z | |
dc.date.issued | 2004 | |
dc.description.abstract | In this paper we consider an exploratory canonical analysis approach for multinomial population based on the phi-divergence measure. We define the restricted minimum phi-divergence estimator, which is seen to be a generalization of the restricted maximum likelihood estimator. This estimator is then used in phi-divergence goodness-of-fit statistics which is the basis of two new families of statistics for solving the problem of selecting the number of significant correlations as well as the appropriateness of the model. | |
dc.description.department | Depto. de Estadística e Investigación Operativa | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Greek General Secretary of Research and Technology | |
dc.description.sponsorship | Spanish Foreign Office | |
dc.description.sponsorship | DGI | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/17683 | |
dc.identifier.issn | 0023-5954 | |
dc.identifier.officialurl | http://www.kybernetika.cz/content/2004/6/757 | |
dc.identifier.relatedurl | http://www.kybernetika.cz | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/50280 | |
dc.issue.number | 6 | |
dc.journal.title | Kybernetika | |
dc.language.iso | eng | |
dc.page.final | 776 | |
dc.page.initial | 757 | |
dc.publisher | Kybernetika | |
dc.relation.projectID | BMF2003-0892. | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 519.237 | |
dc.subject.keyword | canonical analysis | |
dc.subject.keyword | restricted minimum phi-divergence estimator | |
dc.subject.keyword | minimum phi-divergence statistic | |
dc.subject.keyword | simulation | |
dc.subject.keyword | power divergence | |
dc.subject.ucm | Estadística matemática (Matemáticas) | |
dc.subject.unesco | 1209 Estadística | |
dc.title | An exploratory canonical analysis approach for multinomial populations based on the phi-divergence measure | |
dc.type | journal article | |
dc.volume.number | 40 | |
dcterms.references | J. Aitchison and S.D. Silvey: Maximum-likelihood estimation of parameters subject to constraints. Ann. Math. Statist. 29 (1958), 813-828. S. M. Ali and S.D. Silvey: A general class of coefficients of divergence of one distribution from another. J. Roy. Statist. Soc Ser. B 26 (1966), 131-142. E. B. A. Anderson: The Statistical Analysis of Categorical Data. Springer-Verlag, Berlin 1990. A. Basu and S. Basu:. Penalized minimum disparity methods in multinomials models. Statistica Sinica 8 (1998), 841-860. A. Basu and B. G. Lindsay: Minimum disparity estimation for continuous models. Ann. Inst. Statist. Math. 46 (1994), 683-705. A. Basu and S. Sarkar: Minimum disparity estimation in the errors-invariables model. Statist. Probab. Lett. 20 (1994), 69-73. A. Basu and S. Sarkar: The trade-off between robustness and efficiency and the effect of model smoothing. J. Statist. Comput. Simul. 50 (1994), 173-185. J. P. Benzecri: L'Analyse des Donnees. Tome 2: L'Analyse des Correspondances. Dunod, Paris 1973. M. W. Birch: A new proof of the Pearson-Fisher theorem. Ann. Math. Statist. 35 (1964), 817-824. N. A. C. Cressie and L. Pardo: Minimum (phi-divergence estimator and hierarchical testing in loglinear models. Statistica Sinica 10 (2000), 867-884. N. A. C. Cressie and L. Pardo: Model checking in loglinear models using phi-divergences and MLEs. J. Statist. Plann. Inference 103 (2002), 437-453. N. A.C. Cressie and T. R C. Read: Multinomial goodness-of-fit tests. J. Roy. Statist. Soc Ser. B 46 (1984), 440-464. N. J. Crichton and J. P. Hinde: Correspondence analysis as a screening method for indicants for clinical diagnosis. Statistics in Medicine 8 (1989), 1351-1362. I. Csiszar: Eine Informationstheoretische Ungleichung und ihre Anwendung auf den Beweis der Ergodizitat on Markhoffschen Ketten. Publ. Math. Inst. Hungar. Acad. Sci. Ser. A 8 (1963), 85-108. B. Dahdouh, J. F. Durantan, and M. Lecoq: Analyse des donnee sur l'ecologie des acridients d'Afrique de louest. Cahiers de V Analyse des Donnees 3 (1978), 459-482. M. J. R. Fasham: A comparison of nonmetric multidimensional scaling, principal components averaging for the ordination of simulated coenocicles, and coenoplanes. Ecology 58 (1977), 551-561. Z. Gilula and J. Haberman: Canonical Analysis of contingency Tables by Maximum Likelihood. J. Amer. Statist. Assoc. 81 (1986), 395, 780-788. M.J. Greenacre: Theory and Applications of Correspondence Analysis. Academic Press, New York 1984. M. Greenacre: Correspondence analysis in medical research. Statist. Meth. Medic. Res. 1 (1992), 97-117. M. J. Greenacre: Correspondence Analysis in Practice. Academic Press, London 1993. M.J. Greenacre: Correspondence Analysis of the Spanish National Health Survey. Department of Economics and Business, Universitat Pompeu Fabra, Barcelona 2002. H. O. Lancaster: The Chi-squared Distribution. Wiley, New York 1969. L. Lebart, A. Morineau, and K. Warwick: Multivariate Descriptive Statistical Analysis. Wiley, New York 1984. B. G. Lindsay: Efficiency versus robustness. The case for minimum Hellinger distance and other methods. Ann. Statist. 22 (1994), 1081-1114. G. B. Matthews and N. A. S. Crowther: A maximum likelihood estimation procedure when modelling categorical data in terms of cross-product ratios. South African Statist J. 31 (1997), 161-184. G. B. Matthews and N. A. S. Crowther: A maximum likelihood estimation procedures when modeling in terms of constraints. South African Statist. J. 29 (1995), 29-50. D. Morales, L. Pardo, and I. Vajda: Asymptotic divergence of estimates of discrete distributions. J. Statist. Plann. Inference 48 (1995), 347-369. W. C Parr: Minimum distance estimation: a bibliography. Comm. Statist. Theory Methods 10 (1981), 1205-1224. J. A. Pardo, L. Pardo, and K, Zografos: Minimum phi-divergence estimators with constraints in multinomial populations. J. Statist. Plann. Inference 104 (2002), 221-237. T. R. C. Read and N. A. C. Cressie: Goodness-of-fit Statistics for Discrete Multivariat Data. Springer, New York 1988. L. Srole, T.S. Langner, S.T. Michael, M.K. Opler, and T.A.C. Reannie: Mental Health in the Metropolis: The Midtown Manhattan Study. McGraw-Hill, New York 1962. J. Wolfowitz: Estimation by minimum distance method. Ann. Inst. Statist. Math. 5 (1953), 9-23. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 5e051d08-2974-4236-9c25-5e14369a7b61 | |
relation.isAuthorOfPublication | a6409cba-03ce-4c3b-af08-e673b7b2bf58 | |
relation.isAuthorOfPublication.latestForDiscovery | 5e051d08-2974-4236-9c25-5e14369a7b61 |
Download
Original bundle
1 - 1 of 1