Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Modelling Bipolar Multicriteria Decision Making

dc.book.titleComputational intelligence in miulti-criteria decision-making, 2009. mcdm '09. ieee symposium on comutational intelligence in multi-criteria decision-marking
dc.contributor.authorRodríguez González, Juan Tinguaro
dc.contributor.authorVitoriano Villanueva, Begoña
dc.contributor.authorMontero De Juan, Francisco Javier
dc.contributor.authorGómez González, Daniel
dc.date.accessioned2023-06-20T13:38:26Z
dc.date.available2023-06-20T13:38:26Z
dc.date.issued2009
dc.descriptionMAR 30-APR 02, 2009
dc.description.abstractIn this paper we revisit some classical multicriteria decision making aid models in order to stress the presence of dual concepts, which will be consistent with Bipolar Fuzzy Sets (sometimes called Atanassov's Intuitionistic Fuzzy Sets). In addition, we point out how such a dual approach is a non necessary binary heritage, so we can conclude how relevant in practice are decision aid models based in linguistic terms.en
dc.description.departmentDepto. de Estadística e Investigación Operativa
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipGrant
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/16859
dc.identifier.isbn978-1-4244-2764-2
dc.identifier.officialurlhttp://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4938837&tag=1
dc.identifier.relatedurlhttp://ieeexplore.ieee.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/53155
dc.language.isoeng
dc.page.final117
dc.page.initial115
dc.publication.placeNashville, TN
dc.publisherIEEE
dc.relation.ispartofseriesIEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making
dc.relation.projectIDTIN2006-06190
dc.rights.accessRightsrestricted access
dc.subject.cdu510.64
dc.subject.keywordInuitionistic fuzzy-sets
dc.subject.keywordDimension
dc.subject.keywordFuzziness
dc.subject.keywordScience
dc.subject.keywordRules
dc.subject.ucmLógica simbólica y matemática (Matemáticas)
dc.subject.unesco1102.14 Lógica Simbólica
dc.titleModelling Bipolar Multicriteria Decision Makingen
dc.typebook part
dcterms.referencesK.T. Atanassov, “Intuitionistic fuzzy sets,” Fuzzy Sets and Systems vol. 20, 87-96, 1986. K.T. Atanassov, Intuitionistic Fuzzy sets, Physica-Verlag., Heidelberg,New York, 1999. K.T. Atanassov, “A personal view on intuitionistic fuzzy sets,” in: H.Bustince, F. Herrera and J. Montero (Eds.), Fuzzy Sets and Their Extensions:Representation, Aggregation and Models, pp. 23-43, Springer Verlag, Berlin, 2008. A. Bechara, D. Tranel and H. Damasio, “Characterization of the decision-making deficit of patients with ventromedial prefrontal cortex lesions,” Brain vol. 123, 2189-2202, 2000. S. Benferhat, D. Dubois, S. Kaci and H. Prade, “Bipolar possibility theory in preference modelling: representation, fusion and optimal solutions,” Information Fusion vol. 7, 135-150, 2006. H. Bustince, F. Herrera and J. Montero (Eds.), Fuzzy Sets and Their Extensions: Representation, Aggregation and Models, Springer Verlag,Berlin, 2008. H. Bustince, J. Montero, M. Pagola, E. Barrenechea and D. Gomez,“A survey on interval-valued fuzzy sets,” in: W. Pedrycz, A. Skowron and V. Kreinovichedrycz (Eds.),Handbook of Granular Computing, pp. 491-515, John Wiley and Sons,2008. Cutello and J. Montero, “A characterization of rational amalgamation operations,” International Journal of Approximate Reasoning, vol. 8,325-344, 1993. V. Cutello and J. Montero, “Fuzzy rationality measures,”, Fuzzy Sets and Systems, vol. 62, 39-44, 1994. V. Cutello and J. Montero, “Recursive connective rules,” Int. J. Intelligent Systems, vol. 14, pp. 3-20,1999. A. Del Amo, J. Montero, G. Biging and V. Cutello, “Fuzzy classification systems,” European Journal of Operational Research, vol. 156,pp. 459-507, 2004. A. Del Amo, J. Montero and E. Molina, “Representation of consistent recursive rules,” European Journal of Operational Research, vol. 130,pp. 29-53, 2001. D. Dubois, S. Gottwald, P. Hajek, J. Kacprzyk and H. Prade, “Terminological difficulties in fuzzy set theory - the case of intuitionistic fuzzy sets,” Fuzzy Sets and Systems vol. 156, 485-491, 2005. J. Fodor and M. Roubens, Fuzzy Preference Modelling and Multicriteria Decision Support, Kluwer Academic Publishers, Dordrecht, 1994. D. G´omez and J. Montero, “A discussion on aggregation operators,” Kybernetika, vol. 40, pp. 107-120, 2004. D. G´omez, J. Montero and J. Y´a nez, “An algorithmic approach to preference representation,” International Journal of Uncertainty, Fuzzyness and Knowledge-Based Systems vol. 16, 1-18, 2008. J. Gonz´alez-Pach´on, D. G´omez, J.Montero and J.Yañez, “Searching for the dimension of binary valued preference relations,” International Journal of Approximate Reasoning vol. 33, 133-157, 2003. J. Gonzalez-Pachon, D. Gomez, J. Montero and J.Yañez, “Soft dimension theory,” Fuzzy Sets and Systems vol. 137, 137–149 (2003). M. Grabish, S. Greco and M. Pirlot, “Bipolar and bivariate models in multicriteria decision analysis,” International Journal of Intelligent Systems vol. 23, 930-969, 2008. J. Montero, “Arrow’s theorem under fuzzy rationality,” Behavioral Science, vol. 32, pp. 267-273, 1987. J. Montero, “The impact of fuzziness in social choice paradoxes,” Soft Computing, vol. 12, 177-182, 2008. J. Montero, “Fuzzy logic and science,” Studies in Fuzziness and Soft Computing, vol. 243, pp. 67-78, 2009. J. Montero, D. G´omez and H. Bustince, “On the relevance of some families of fuzzy sets, ” Fuzzy Sets and Systems vol. 158, 2429-2442,2007. J. Montero, V. Lopez and D. Gomez, “The role of fuzziness in decision making,” in: D. Ruan et al., Fuzzy Logic: an spectrum of applied and theoretical issues, pp. 337-349, Springer, Berlin, 2007. J. Montero and J. Tejada, “A necessary and sufficient condition for the existence of Orlovsky‘s choice set,” Fuzzy Sets and Systems, vol. 26,121-125, 1988. J. Montero, J. Tejada and V. Cutello, “A general model for deriving preference structures from data,” Europearn Journal of Operational Research vol. 98, 98-110, 1997. S.A. Orlovsky, “Decision-making with a fuzzy preference relation,” Fuzzy Sets and Systems, vol. 1, 155-167, 1978. A.D. Pearman, J. Montero and J. Tejada, “Fuzzy multicriteria techniques:an application to transport planning,” Lecture Notes in Computer Science vol. 521, pp. 510-519, 1991. B. Roy, “Decision sciences or decision aid sciences,” European Journal of Operational Research vol. 66, pp. 184-203, 1993. [30] E.H. Ruspini, “A new approach to clustering,” Information and Control,vol. 15, pp. 22-32, 1969. T.L. Saaty, “Fundamentals of Decision Making with the Analytic Hierarchy Process,” RWS Publications, Pittsburgh, 1994 (Revised in 2000). G. Shafer, “Savage revisited,” Statistical Science vol. 1, 463–501,1986. Y. Siskos and A. Spyridakos, “Intelligent multicriteria decision support:overview and perspectives,” European Journal of Operational Research, vol. 113, 236-246, 1999. J. Y´a˜nez and J. Montero, “A poset dimension algorithm,” Journal of Algorithms vol. 30, 185-208, 1999. W. Zhang, “Bipolar fuzzy sets,” in: Proceedigns of the IEEE World Congress on Computational Science (FuzzIEEE),Anchorage, Alaska,pp. 835-840, 1998
dspace.entity.typePublication
relation.isAuthorOfPublicationddad170a-793c-4bdc-b983-98d313c81b03
relation.isAuthorOfPublicationefbdfdd4-3d98-4463-813b-73beda8ff1dc
relation.isAuthorOfPublication9e4cf7df-686c-452d-a98e-7b2602e9e0ea
relation.isAuthorOfPublication4dcf8c54-8545-4232-8acf-c163330fd0fe
relation.isAuthorOfPublication.latestForDiscoveryddad170a-793c-4bdc-b983-98d313c81b03

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Montero21.pdf
Size:
346.28 KB
Format:
Adobe Portable Document Format