Para depositar en Docta Complutense, identifícate con tu correo @ucm.es en el SSO institucional: Haz clic en el desplegable de INICIO DE SESIÓN situado en la parte superior derecha de la pantalla. Introduce tu correo electrónico y tu contraseña de la UCM y haz clic en el botón MI CUENTA UCM, no autenticación con contraseña.
 

Soft interactions in jet quenching

dc.contributor.authorHidalgo Duque, Carlos
dc.contributor.authorLlanes Estrada, Felipe José
dc.date.accessioned2023-06-18T06:45:23Z
dc.date.available2023-06-18T06:45:23Z
dc.date.issued2015-05-10
dc.description© 2015 World Scientific Publishing. We thank J. Liao from Indiana University for pointing to us that the literature lacks assessments of ^q in the hadronic phase, which this work attempts to supply, and for reading the first manuscript, as well as M. Benzke, N. Brambilla, A. Gomez Nicola, A. Sabio-Vera and J. Torres-Rincon for useful comments and references. Financial support by Spanish Grants FPA2011-27853-C02-01 and FIS2011-28853-C02-02. C. Hidalgo-Duque thanks the support of the JAE-CSIC Program.
dc.description.abstractWe study the collisional aspects of jet quenching in a high-energy nuclear collision, especially in the final state pion gas. The jet has a large energy, and acquires momentum transverse to its axis more effectively by multiple soft collisions than by few hard scatterings (as known from analogous systems such as J/ψ production at Hera). Such regime of large E and small momentum transfer corresponds to Regge kinematics and is characteristically dominated by the pomeron. From this insight we estimate the jet quenching parameter in the hadron medium (largely a pion gas) at the end of the collision, which is naturally small and increases with temperature in line with the gas density and compare it to the jet quenching parameter obtained within the quark-gluon plasma (QGP) phase in widely known perturbative approximations. The physics in the quark-gluon plasma/liquid phase is less obvious, and here we revisit a couple of simple estimates that suggest indeed that the pomeron-mediated interactions are very relevant and should be included in analysis of the jet quenching parameter. Finally, since the occasional hard collisions produce features characteristic of a Lèvy flight in the q^2_⊥ plane perpendicular to the jet axis, we suggest one- and two-particle q_⊥ to correlations as interesting experimental probes sensitive to the nature (softness versus hardness) of the interactions of a jet inside the QGP.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipConsejo Superior de Investigaciones Científicas (CSIC)
dc.description.sponsorshipFondo Social Europeo
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/30818
dc.identifier.doi10.1142/S0217751X15500670
dc.identifier.issn0217-751X
dc.identifier.officialurlhttp://dx.doi.org/10.1142/S0217751X15500670
dc.identifier.relatedurlhttp://www.worldscientific.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/24044
dc.issue.number13
dc.journal.titleInternational journal of modern physics A
dc.language.isoeng
dc.publisherWorld Scientific Publishing
dc.relation.projectIDFPA2011-27853-C02-01
dc.relation.projectIDFIS2011-28853-C02-02
dc.relation.projectIDPrograma JAE-CSIC (Junta para la Ampliación de Estudios)
dc.rights.accessRightsopen access
dc.subject.cdu53
dc.subject.keywordRadiative energy-loss
dc.subject.keywordQcd
dc.subject.keywordPomeron
dc.subject.keywordTemperature
dc.subject.keywordScattering
dc.subject.keywordCollisions
dc.subject.keywordDiffusion
dc.subject.keywordLattice
dc.subject.keywordGluons
dc.subject.keywordHera
dc.subject.ucmFísica (Física)
dc.subject.unesco22 Física
dc.titleSoft interactions in jet quenching
dc.typejournal article
dc.volume.number30
dcterms.references[1] J. D. Bjorken, “Energy loss of energetic partons in Quark-Gluon plasma: Possible extinction of High PT jets in Hadron-Hadron collisions”, unpublished Fermilab preprint, FERMILAB-Pub-82/59-THY, August 1982. [2] M. Gyulassy, M. Plumer, Phys. Lett. B 243 (1990) 432. [3] M. H. Thoma, M. Gyulassy, Nucl. Phys. B 351 (1991) 491. [4] E. Braaten, M. H. Thoma, Phys. Rev. D 44 (1991) 2625. [5] R. Baier et al. Nucl. Phys. B 484 (1997) 265; R. Baier et al. Nucl. Phys. B 483 (1997) 291; see recently M. Bluhm et al. Acta Phys. Polon. Supp. 5 (2012) 1063. [6] T. Renk, arXiv:1309.3059 [hep-ph]. [7] S. Domdey, B. Z. Kopeliovich and H. J. Pirner, Nucl. Phys. A 856 (2011) 134. [8] N. Armesto, L. Cunqueiro and C. A. Salgado, arXiv:0906.0754 [hep-ph]. [9] CMS collaboration, Physics Letters B 712 (2012) 176197. [10] A. Adare et al. [PHENIX Collaboration], Phys. Rev. C 77 (2008) 064907. [11] A. Dainese, C. Loizides and G. Paic, Eur. Phys. J. C 38 (2005) 461. [12] K. M. Burke, A. Buzzatti, N. Chang, C. Gale, M. Gyulassy, U. Heinz, S. Jeon and A. Majumder et al., Phys. Rev. C 90, 014909 (2014). [13] F. D. Aaron et al. [H1 Collaboration], Eur. Phys. J. C 68 (2010) 401. [14] M. Prakash et al. Phys. Rept. 227 (1993) 321. [15] L. M. Abreu, D. Cabrera and J. M. Torres-Rincon, Phys. Rev. D 87 (2013) 3, 034019. [16] J. M. Torres-Rincon, dissertation presented to Universidad Complutense de Madrid, “Hadronic Transport Coe_cients from E_ective Field Theories,” arXiv:1205.0782 [hep-ph]. [17] L. M. Abreu et al. Annals Phys. 326 (2011) 2737. [18] A. Dobado, F. J. Llanes-Estrada and J. M. Torres-Rincon, Phys. Lett. B 702 (2011) 43. [19] A. Dobado and F. J. Llanes-Estrada, Phys. Rev. D 69 (2004) 116004. [20] D. Fernandez-Fraile and A. Gómez Nicola, Phys. Rev. D 73 (2006) 045025. [21] D. Fernandez-Fraile and A. Gómez Nicola, Phys. Rev. Lett. 102 (2009) 121601. [22] U. Habel, et al. Z. Phys. A 336, 435 (1990). [23] A. V. Friesen, Yu. V. Kalinovsky and V. D. Toneev, arXiv:1304.7150 [hep-ph]. [24] V. A. Okorokov, arXiv:0907.0951 [hep-ph]. [25] G. A. Schuler and T. Sjostrand, Phys. Rev. D 49, 2257 (1994). [26] CERN yellow reports: proceedings of the 1972 CERN summer school, page 325. [27] L. Tolos and J. M. Torres-Rincon, arXiv:1306.5426 [hep-ph]. [28] J. Stachel, A. Andronic, P. Braun-Munzinger and K. Redlich, J. Phys. Conf. Ser. 509, 012019 (2014) [arXiv:1311.4662 [nuclth]]. [29] S. K. Prasad [ALICE Collaboration], J. Phys. Conf. Ser. 389 (2012) 012005. [30] Review of Particle Physics, J. Beringer et al., Phys. Rev. D 86010001, (2012). [31] P. V. Landsho_, J. C. Polkinghorne and R. D. Short, Nucl. Phys. B 28 (1971) 225. [32] Yu. A. Simonov, Phys. Lett. B 249 (1990) 514; F. J. Llanes-Estrada et al. Nucl. Phys. A 710 (2002) 45. [33] R. L. Delgado, C. Hidalgo-Duque and F. J. Llanes-Estrada, Few Body Systems 54 (2013) 1705-1717. [34] X. -N. Wang, Phys. Lett. B 579 (2004) 299. [35] P. B. Arnold and W. Xiao, Phys. Rev. D 78 (2008) 125008. [36] J. Braun and H. -J. Pirner, Phys. Rev. D 75, 054031 (2007). [37] S. Caron-Huot, Phys. Rev. D 79 (2009) 065039. [38] M. Panero, K. Rummukainen and A. Schfer, Nucl. Phys. A (2014); ibid. Phys. Rev. Lett. 112, 162001 (2014). [39] B. B. Brandt, A. Francis, M. Laine and H. B. Meyer, arXiv:1408.5917 [hep-lat]. [40] I. P. Ivanov, N. N. Nikolaev and A. A. Savin, Phys. Part. Nucl. 37 (2006) 1. [41] S. Donnachie et al. Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 19 (2002) 1; J. R. Forshaw and D. A. Ross, Cambridge Lect. Notes Phys. 9 (1997) 1. [42] C. Manuel and S. Mrowczynski, Phys. Rev. D 70 (2004) 094019. [43] J. R. Peláez and F. J. Yndurain, Phys. Rev. D 69 (2004) 114001. [44] U. D’Alesio, A. Metz and H. J. Pirner, Eur. Phys. J. C 9 (1999) 601. [45] A. H. Mueller and W. -K. Tang, Phys. Lett. B 284, 123 (1992). [46] V. Barone and E. Predazzi, “High-Energy Particle Di_raction”, Springer-Verlag Berlin-Heidelberg 2002, pg. 205. [47] N. Kidonakis, and J. F. Owens, Phys. Rev. D 63 (2001) 054019. [48] J. P. Bouchaud and A. Georges, Phys. Rep. 195 (1990) 127293. [49] F. D’Eramo, H. Liu and K. Rajagopal, Phys. Rev. D 84 (2011) 065015. [50] N. Armesto et al., Phys. Rev. C 86 (2012) 064904. [51] X. -F. Chen et al. Phys. Rev. C 81 (2010) 064908. [52] W. -t. Deng and X. -N. Wang, Phys. Rev. C 81 (2010) 024902. [53] J. Casalderrey-Solana, J. G. Milhano and U. A. Wiedemann, J. Phys. G 38 (2011) 035006. [54] K. C. Zapp, F. Krauss and U. A.Wiedemann, JHEP 1303 (2013) 080. [55] M. Mannarelli et al. Phys. Rev. D 81 (2010) 074036. [56] H. J. de Vega and L. N. Lipatov, Phys. Lett. B 578 (2004) 335. [57] D. S. Henty et al. [UKQCD Collaboration], Phys. Lett. B 369 (1996) 130. [58] C. Parrinello [UKQCD Collaboration], Nucl. Phys. Proc. Suppl. 53 (1997) 331. [59] Z. -t. Liang, X. -N. Wang and J. Zhou, Phys. Rev. D 77 (2008) 125010. [60] M. Benzke et al. JHEP 1302 (2013) 129. [61] I. O. Cherednikov, J. Lauwers and P. Taels, arXiv:1307.5518 [hep-ph]. [62] V. Del Duca, hep-ph/9503226; DESY 95-023 (1995). [63] A. Idilbi and A. Majumder, Phys. Rev. D 80 (2009) 054022. [64] G. Ovanesyan and I. Vitev, JHEP 1106 (2011) 080. [65] G. Ovanesyan and I. Vitev, Phys. Lett. B 706 (2012) 371. [66] C.W. Bauer, B. O. Lange and G. Ovanesyan, JHEP 1107 (2011) 077. [67] J. F. Donoghue and D. Wyler, Phys. Rev. D 81 (2010) 114023. [68] M. Spousta, Mod. Phys. Lett. A 28 (2013) 1330017; A. Andronic, AIP Conf. Proc. 1498 (2002) 125. [69] J. Liao and E. Shuryak, Phys. Rev. Lett. 102 (2009) 202302. [70] X. Zhang and J. Liao, arXiv:1208.6361; ibid. Phys. Rev. C 87 (2013) 044910.
dspace.entity.typePublication
relation.isAuthorOfPublication6290fe55-04e6-4532-91e6-1df735bdbdca
relation.isAuthorOfPublication.latestForDiscovery6290fe55-04e6-4532-91e6-1df735bdbdca

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
LlanesEstrada 87 postprint.pdf
Size:
479.67 KB
Format:
Adobe Portable Document Format

Collections