Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Isotropic-nematic transition of D-dimensional hard convex-bodies within the effective-liquid approach

dc.contributor.authorCuesta, J. A.
dc.contributor.authorFernández Tejero, Carlos
dc.contributor.authorBaus, Marc
dc.date.accessioned2023-06-20T18:54:10Z
dc.date.available2023-06-20T18:54:10Z
dc.date.issued1992-05-15
dc.description© 1992 The American Physical Society. We are grateful to Hong Xu for allowing us to use some of her unpublished material on hard spherocylinders. One of us (J.A.C.) is also indebted to her for some very valuable discussions. We are also grateful to Patricia Lamas. This work has been partially supported by a grant from the Dirección General de Investigación Científica y Técnica (Spain) under Grant No. PB88-0140. One of us (M.B.) acknowledges the financial support of the Fonds National de la Recherche Scientifique and also from the Association Euratom-Etat Belge.
dc.description.abstractDensity-functional theory within the effective-liquid approximation is applied to the problem of the isotropic-nematic transition of D-dimensional hard convex bodies. It is shown that the free-energy functional factorizes into its radial and angular contributions. Due to this factorization two different versions of the self-consistent equations can be implemented, and it is shown that in D = 3 they coincide with previous theories. In the present work all the formulas are worked out with a particular choice for the angular distribution: the one-order-parameter approximation. The problem of determining the excluded volume of two hard convex bodies is discussed. For hard ellipsoids the Gaussian-overlap approximation is used, whereas an exact formula is given for the excluded volume of two hard spherocylinders. For D = 2 the virial coefficients of the isotropic phase as well as the transition are incorrectly predicted, due to the approximation of the direct correlation function involved. For D = 3 the results are in very good agreement with simulations. Expression and data for the isotropic-nematic transition for D > 3 are also provided. Extensive comparisons with the results of other theories are made throughout. The one-order-parameter approximation is proven not to alter the order of the transition. Finally, it is shown that the present approximation becomes exact in the large-D limit.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipDirección General de Investigación Científica y Técnica (Spain)
dc.description.sponsorshipFonds National de la Recherche Scientifique
dc.description.sponsorshipAssociation Euratom-Etat Belge
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/23950
dc.identifier.doi10.1103/PhysRevA.45.7395
dc.identifier.issn1050-2947
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevA.45.7395
dc.identifier.relatedurlhttp://pra.aps.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/58893
dc.issue.number10
dc.journal.titlePhysical Review A
dc.language.isoeng
dc.page.final7412
dc.page.initial7395
dc.publisherAmerican Physical Society
dc.relation.projectIDPB88-0140
dc.rights.accessRightsopen access
dc.subject.cdu536
dc.subject.keywordDensity-functional theory
dc.subject.keywordMonte-Carlo simulation
dc.subject.keywordOf-revolution fluid
dc.subject.keywordComputer-simulation
dc.subject.keywordVirial-coefficients
dc.subject.keywordField-theory
dc.subject.keywordIsing-model
dc.subject.keywordCrystals
dc.subject.keywordEllipsoids
dc.subject.keywordOrder
dc.subject.ucmTermodinámica
dc.subject.unesco2213 Termodinámica
dc.titleIsotropic-nematic transition of D-dimensional hard convex-bodies within the effective-liquid approach
dc.typejournal article
dc.volume.number45
dcterms.references[1] B.J. Alder and T. E. Wainwright, J. Chem. Phys. 27, 1208 (1957). [2] B. J. Alder and T. E. Wainwright, Phys. Rev. 127, 359 (1962). [3] See M. Baus, J. Stat. Phys. 48, 1129 (1987); and J. Phys. Condens. Matter 2, 2111 (1990) for a review of the DFT applied to the study of freezing. [4] R. Evans, Adv. Phys. 28, 143 (1979). [5] T. V. Ramakrishnan and M. Yussouf, Phys. Rev. B 19, 2775 (1979). [6] J. P. Hansen and I. R. McDonald, Theory of Simple Liquids (Academic, London, 1986). [7] J. F. Lutsko and M. Baus, Phys. Rev. A 41, 6647 (1990). [8] P. G. de Gennes, The Physics of Liquid Crystals (Clarendon, Oxford, 1974). [9] L. Onsager, Ann. N. Y. Acad. Sci. 51, 627 (1949). [10] R. Eppenga and D. Frenkel, Mol. Phys. 52, 1303 (1984). [11] D. Frenkel and R. Eppenga, Phys. Rev. A 31, 1776 (1985). [12] A. Stroobants, H. N. W. Lekkerkerker, and D. Frenkel, Phys. Rev. A 36, 2929 (1987). [13] D. Frenkel, J. Phys. Chem. 92, 3280 (1988); J. A. C. Veerman and D. Frenkel, Phys. Rev. A 41, 3237 (1990). [14] M. P. Allen and M. R. Wilson, J. Comput. -Aided Mol. Design 3, 335 (1989). [15] D. Frenkel and B.M. Mulder, Mol. Phys. 55, 1171 (1985). [16] M. P. Allen, Liq. Cryst. 8, 499 (1990). [17] J. Vieillard-Baron, J. Chem. Phys. 56, 4729 (1972). [18] J. A. Cuesta and D. Frenkel, Phys. Rev. A 42, 2126 (1990). [19] M. D. Lipkin and D. W. Oxtoby, J. Chem. Phys. 79, 1939 (1983);T. J. Sluckin and P. Shukla, J. Phys. A 16, 1539 (1983). [20] B.M. Mulder and D. Frenkel, Mol. Phys. 55, 1193 (1985). [21] B.Tjipto-Margo and G. T. Evans, J. Chem. Phys. 93, 4254 (1990). [22] U. P. Singh and Y. Singh, Phys. Rev. A 33, 2725 (1986). [23] J. F. Marko, Phys. Rev. Lett. 60, 325 (1988). [24] A. Perera, G. N. Patey, and J. J. Weis, J. Chem. Phys. 89, 6941 (1988). [25] B. M. Mulder, Phys. Rev. A 35, 3095 (1987); A. M. Somoza and P. Tarazona, J. Chem. Phys. 91, 517 (1989); R. HoJyst and A. Poniewierski, Phys. Rev. A 39, 2742 (1989); A. Poniewierski and R. HoJyst, ibid 41, 6871 (.1990). [26] R. HoJyst and A. Poniewierski, Mol. Phys. 68, 381 (1989). [27] M. Baus, J. L. Colot, X. G. Wu, and H. Xu, Phys. Rev. Lett. 59, 2184 (1987); J. L. Colot, X. G. Wu, H. Xu, and M. Baus, Phys. Rev. A 38, 2022 (1988). [28] J. A. Cuesta, C. F. Tejero, and M. Baus, Phys. Rev. A 39, 6498 (1989). [29] J. A. Cuesta, C. F. Tejero, H. Xu, and M. Baus, Phys. Rev. A 44, 5306 (1991). [30] S. D. Lee, J. Chem. Phys. 87, 4932 (1987);83, 7036 (1988). [31] L. S. Ornstein and F. Zernike, Proc. Acad. Sci. Amsterdam 17, 793 (1914). [32] For the solution of a 1D fiuid with nearest-neighbor interaction in an arbitrary external field see J. K. Percus, in Simple Models of Equilibrium and Nonequilibrium Phenomena, edited by J. L. Lebowitz (North-Holland, Amsterdam, 1987); the solution of a simple 1D model with anisotropic hard-core interactions is given in C. F. Tejero and J. A. Cuesta, Physica A 168, 942 (1990); solutions for 1D spin models can be found in J. K. Percus, J. Stat. Phys. 16, 299 (1977);and C. F. Tejero, ibid. 48, 531 (1987). [33] R. Pynn, J. Chem. Phys. 60, 4579 (1974). [34] M. Baus, J. Phys. Condens. Matter 1, 3131 (1989). [35] M. Baus and J. L. Colot, Phys. Rev. A 36, 3912 (1987). [36] P. Tarazona, Phys. Rev. A 31, 2672 (1985). [37] H. N. W. Lekkerkerker, Ph. Coulon, R. Van der Haegen, and R. Debliek, J. Chem. Phys. 80, 3427 (1984). [38] Handbook of Mathematical Functions, edited by M. Abramowitz and I. A. Stegun (Dover, New York, 1965); Table of Integrals, Series and Products, edited by I. S. Gradshteyn and I. M. Ryzhik (Academic, New York, 1980). [39] S. D. Lee and R. B.Meyer, J. Chem. Phys. 84, 3443 (1986). [40] T. Boublik and I. Nezbeda, Collect. Czech. Chem. Commun. 51, 2301 (1986). [41] B. J. Berne and P. Pechukas, J. Chem. Phys. 56, 4213 (1972). [42] J. A.. Cuesta and C. F. Tejero, Phys. Lett. A 152, 15 (1991). [43] I. Balberg, C. H. Anderson, S. Alexander, and N. Wagner, Phys. Rev. B30, 3933 (1984). [44] Y. Song and E. A. Mason, Phys. Rev. A 41, 3121 (1990). [45] T. Boublik, Mol. Phys. 27, 1415 (1974); 29, 421 (1975). [46] Y. Rosenfeld, J. Chem. Phys. 89, 4272 (1988). [47] G. Tarjus, P. Viot, S. M. Ricci, and J. Talbot, Mol. Phys. 73, 773 (1991). [48] J. A. Cuesta and D. Frenkel (unpublished). [49] M. Rigby, Mol. Phys. 66, 1261 (1989); D. Frenkel, ibid 65, 493 (1988). [50] R. F. Kayser, Jr. and H. J. Raveche, Phys. Rev. A 17, 2067 (1978). [51] M. E. Mann, C. H. Marshall, and A. D. J. Haymet, Mol. Phys. 66, 493 (1989). [52] H. L. Frisch, N. Rivier, and D. Wyler, Phys. Rev. Lett. 54, 2061 (1985); H. L. Frisch and J. K. Percus, Phys. Rev. A 35, 4696 (1987). [53] H. O. Carmesin, H. L. Frisch, and J. K. Percus, Phys. Rev. B40, 9416 (1989). [54] H. O. Carmesin, H. L. Frisch, and J. K. Percus, J. Stat. Phys. 63, 791 (1991
dspace.entity.typePublication
relation.isAuthorOfPublication45ce99f0-8f7e-41b5-ac11-1ae7ba368c80
relation.isAuthorOfPublication.latestForDiscovery45ce99f0-8f7e-41b5-ac11-1ae7ba368c80

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
F-Tejero28.pdf
Size:
722.03 KB
Format:
Adobe Portable Document Format

Collections