Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

On spinor bundles

dc.contributor.authorSols Lucía, Ignacio
dc.date.accessioned2023-06-21T02:04:15Z
dc.date.available2023-06-21T02:04:15Z
dc.date.issued1985
dc.description.abstractA. A. Beĭlinson's spectral sequence [Funktsional. Anal. i Prilozhen. 12 (1978), no. 3, 68–69;] gives a way of reconstructing any coherent sheaf on P n from the cohomology on P n of this sheaf and its twists. In this article the author shows that a similar construction is possible on the Grassmannian of 2-planes in C 4 , where twisting with the hyperplane section bundle on P n is replaced by tensoring with various "spinor bundles'', namely, associated bundles of the universal bundle. Indeed it is clear that the author's generalization applies to an arbitrary Grassmannian. The author illustrates his theorem with an example (Proposition 5), and in fact most of this paper is concerned with calculations of cohomology for this example. These calculations may be effected alternatively by means of the Bott-Borel-Weil theorem [ R. Bott , Ann. of Math. (2) 66 (1957), 203–248;]. The paper is plagued with misprints: e.g., in Proposition 5 replace E(1) by E(−1) , ⊗ by ⊕ , and (n+2 2) by (n+2 3) .
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/20350
dc.identifier.doi10.1016/0022-4049(85)90031-3
dc.identifier.issn0022-4049
dc.identifier.officialurlhttp://www.sciencedirect.com/science/article/pii/0022404985900313
dc.identifier.relatedurlhttp://www.sciencedirect.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/64774
dc.issue.number1
dc.journal.titleJournal of Pure and Applied Algebra
dc.language.isoeng
dc.page.final94
dc.page.initial85
dc.publisherElsevier Science B.V. (North-Holland)
dc.rights.accessRightsrestricted access
dc.subject.cdu512
dc.subject.ucmÁlgebra
dc.subject.unesco1201 Álgebra
dc.titleOn spinor bundles
dc.typejournal article
dc.volume.number35
dcterms.referencesA.A. Beilinson Coherent sheaves on n and problems in linear algebra Funct. Analysis, 12 (3) (1978), pp. 68–69 H. Cartan, S. Eilenberg Homological Algebra Princeton Univ. Press, Princeton NJ (1966) M.G. Eastwood, R. Penrose, R.O. Wells Cohomology and masless fields Comm. Math. Physics, 78 (1981), pp. 305–381 R. Hartshorne Algebraic Geometry (Springer, Berlín 1977)
dspace.entity.typePublication
relation.isAuthorOfPublication6d35def4-3d5f-4978-800f-82b7edf76b5d
relation.isAuthorOfPublication.latestForDiscovery6d35def4-3d5f-4978-800f-82b7edf76b5d

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Sols21.pdf
Size:
402.92 KB
Format:
Adobe Portable Document Format

Collections