Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Curves and vector bundles on quartic threefolds

dc.contributor.authorArrondo Esteban, Enrique
dc.contributor.authorMaddona, Carlo G.
dc.date.accessioned2023-06-20T00:09:04Z
dc.date.available2023-06-20T00:09:04Z
dc.date.issued2009
dc.description.abstractIn this paper we study arithmetically Cohen-Macaulay (ACM for short) vector bundles E of rank k 3 on hypersurfaces Xr P4 of degree r 1. We consider here mainly the case of degree r = 4, which is the first unknown case in literature. Under some natural conditions for the bundle E we derive a list of possible Chern classes (c1, c2, c3) which may arise in the cases of rank k = 3 and k = 4, when r = 4 and we give several examples.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedFALSE
dc.description.sponsorshipMinisterio de Ciencia y Tecnología (España)
dc.description.sponsorshipMinisterio de Educación (España)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/14767
dc.identifier.doi10.4134/JKMS.2009.46.3.589
dc.identifier.issn0304-9914
dc.identifier.officialurlhttps://koreascience.kr/article/JAKO200913234255706.pdf
dc.identifier.urihttps://hdl.handle.net/20.500.14352/42090
dc.issue.number3
dc.journal.titleJournal of the Korean Mathematical Society
dc.language.isoeng
dc.page.final608
dc.page.initial589
dc.publisherKorean Mathematical Society
dc.relation.projectIDBFM2003-03971/MATE
dc.relation.projectIDI3P-CSIC
dc.relation.projectIDMTM2007-67623
dc.rights.accessRightsopen access
dc.subject.cdu512.7
dc.subject.keywordIntermediate cohomology
dc.subject.keywordCriterion
dc.subject.keywordQuartic threefold
dc.subject.keywordACM bundle
dc.subject.keywordProjectively normal curve
dc.subject.ucmGeometria algebraica
dc.subject.unesco1201.01 Geometría Algebraica
dc.titleCurves and vector bundles on quartic threefolds
dc.typejournal article
dc.volume.number46
dcterms.references[1] E. Arbarello, M. Cornalba, P.A. Griffiths and J. Harris, Geometry of Algebraic Curves, Springer, 1985. [2] E. Arbarello and E. Sernesi, Petri’s approach to the study of the ideal associated to a special divisor, Inventiones Math. 49(1978), 99–119. [3] E. Arrondo, A home-made Hartshorne-Serre correspondence, Rev.Mat. Complut. 20 (2007), no. 2, 423–443. [4] E. Arrondo and L. Costa, Vector bundles on Fano 3–folds without intermediate cohomology, Comm. Algebra 28 (2000), no. 8, 3899–3911. [5] E. Arrondo and D. Faenzi, Vector bundles with no intermediate cohomology on Fano threefolds of type V22, Pacific J. Math. 225 (2006), no. 2, 201–220. [6] J. Carlson, M. Green, P. Griffiths and J. Harris, Infinitesimal variations of Hodge structures (I), Comp. Math. 50 (1983), 105–205. [7] L. Chiantini and C. Madonna, ACM bundles on a general quintic threefold, Matematiche (Catania) 55(2000), no.2, 239–258. [8] L. Chiantini and C. Madonna, A splitting criterion for rank 2 vector bundles on a general sextic threefold, Internat. J. Math. 15(2004), no.4, 341–359. [9] L. Chiantini and C.Madonna, ACM bundles on general hypersurfaces in P5 of low degree, Collect. Math. Vol. 56(2005), no. 1, 85-96. [10] D. Eisenbud, Commutative algebra with a view toward algebraic geometry, Springer 1999. [11] D. Eisenbud, J. Koh, and M. Stillman, Determinantal Equations for Curves of High Degree Amer. J. Math. Vol. 110(1988), no. 3, pp. 513- 539. [12] D. Faenzi, Bundles over the Fano threefold V5, Comm. Algebra 33(2005), no. 9, 3061–3080. [13] W. Fulton, Intersection theory, Springer 1998. [14] J. Harris, M. Roth and J. Starr, Curves of small degree on cubic threefolds, Rocky Mountain J. Math. 35(2005), no. 3, 761–817. [15] G. Horrocks, Vector bundles on the punctured spectrum of a local ring, Proc. London Math. Soc. 14 (1964), 689-713. [16] A. Iliev and D. Markushevich, Quartic 3-folds: pfaffians, vector bundles, and half-canonical curves, Mich. Math. J. 47 (2000), 385–394. [17] A. Iliev and L. Manivel, Pfaffian lines and vector bundles on Fano threefolds of genus 8, J. Alg. Geom., to appear. [18] N.M. Kumar, A.P. Rao and G.V. Ravindra, Arithmetically Cohen- Macaulay bundles on three dimensional hypersurfaces, Int. Math. Res. Not. IMRN 2007, no. 8, Art. ID rnm025, 11 pp. [19] C. Madonna, A splitting criterion for rank 2 vector bundles on hypersurfaces in P4, Rend. Sem. Mat. Univ. Pol. Torino 56 (1998), no.2, 43–54. [20] C. Madonna, Rank–two vector bundles on general quartic hypersurfaces in P4, Rev. Mat. Complut. XIII (2000), num.2, 287–301. [21] C.G.Madonna, ACM vector bundles on prime Fano threefolds and complete intersection Calabi Yau threefolds, Rev. Roumaine Math. Pures Appl. 47(2002) no.2, 211-222. [22] C. Madonna, Rank 4 vector bundles on the quintic threefold, CEJM 3 (2005), no.3, 404–411. [23] S. Mori, On degrees and genera of curves on smooth quartic surfaces in P3, Nagoya Math. J. 96(1984), 127–132. [24] B.G. Mo˘ıˇsezon, Algebraic homology classes on algebraic varieties, Izv. Akad. Nauk SSSR Ser. Mat. 31 (1967) 225–268.
dspace.entity.typePublication
relation.isAuthorOfPublication5bd88a9c-e3d0-434a-a675-3221b2fde0e4
relation.isAuthorOfPublication.latestForDiscovery5bd88a9c-e3d0-434a-a675-3221b2fde0e4

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
arrondo_curves.pdf
Size:
200.14 KB
Format:
Adobe Portable Document Format

Collections